Acknowledgments

Some features are based on programs by John Cragg, Robert Davies, Bill Farebrother, Amos Golan, Gordon Hughes, Tony Hall, Roger Koenker, Doug Miller, Charles Nelson, David Ryan, and Leigh Tesfatsion. In addition S. Donna Wong, Jeremy Boyd, Shirley Haun, Nancy Horsman, Cherie Metcalf, Robert Picard, Heather Waples, Maureen Chin, and Marsha Courchane have contributed substantial portions of this manual. Many other individuals have aided in improving the program and documentation. In particular, SHAZAM would not have been possible without the assistance of Justin Wyatt, Mary Beth Walker, Terry Wales, Keith Wales, Steve Theobald, Eleanor Tao, John Small, Meridith Scantlen, Gene Savin, Esther Ruberl, Hedley Rees, Angela Redish, Michel Poitevin, Joris Pinkse, Jeff Perloff, Branko Peric, Doug Pearce, Harry Paarsch, James Nason, Junji Nakano, Robert McRae, Mark McBride, Michael McAleer, Stuart Logie, David Levy, Bert Kritzer, Stan Kita, George Judge, Fred Joutz, David Jaeger, Al Horsman, Malcolm Greig, Bill Griffiths, Mark Greene, Quentin Grafton, David Gow, Gene Golub, Dorothy Golosinski, Debra Glassman, David Giles, Judy Giles, John Geweke, Frank Flynn, Robert Engle, Stephen Donald, Erwin Diewert, John Deegan, Melanie Courchene, James Chalfant, Oral Capps, Trudy Cameron, Ray Byron, Linda Bui, Alex Bui, Andrew Brownsworth, Peter Berck, Patty Hall, Samantha Caretti, Viola Bates, Sofia Bates.

Special Acknowledgments - Version 11

Arun Rattan, Madeleine Golding, Carl Tipton, Skif Pankov.

An appropriate reference for SHAZAM is:

“Teaching econometrics from a robust point of view with a focus on finite sample properties puts extraordinary demands upon the Monte Carlo capabilities of statistical software. I’ve moved from a mainframe computer to SHAZAM on a PC when the 386 chip showed up and never looked back. SHAZAM’s fabulous site license allows us to provide our students at zero marginal cost with a full copy of the software I use for research purposes.”

Professor David Levy
Economics Department, George Mason University
Virginia, United States

SHAZAM has been used at our university for many years. SHAZAM has a wide variety of ready-to-use routines but is also a very fast and general programming language that can be used to create custom and niche procedures. The program’s versatility and reasonable price have been very important to us.”

Professor Jim Schmidt
Applied Economics, College of Business Administration, University of Nebraska-Lincoln
Nebraska, United States

“SHAZAM has earned a well-deserved reputation as an excellent general-purpose econometrics package and the new version promises to take it to the next level. Moreover, intuitive commands, common sense defaults, and extensive on-line help make it ideal for teaching. Customer support is responsive and generous.”

Professor Simon Power
Department of Economics, University of Carleton
Ottawa, Canada

“Since the 1980s I have used SHAZAM as a critical resource for research and teaching. SHAZAM’s user-friendly nature is extremely helpful for students and anyone not familiar with programming languages. It still requires users to understand the techniques they are actually applying. In the past I have particularly appreciated applying non-linear techniques when estimating demand models and, as my research has shifted to Economic Statistics, I use it now for those particular applications. SHAZAM has innovated in new econometric procedures ahead of competing software and, interestingly, at a most competitive price. The SHAZAM documentation and support is clear and advanced.“

Professor Achille Vernizzi
Department of Economics, Business and Statistics, University of Milan
Italy

“For detailed diagnostic checks and hypothesis testing, SHAZAM has been the most reliable and updated software from the days when it was first installed on a mainframe computer.”

Professor Mamoru Obayashi
School of Commerce, Senshu University
Tokyo and Kawasaki Japan
“SHAZAM is the ideal econometrics software to teach with. Students can learn the basics very quickly and as they progress they will, like their teachers, appreciate SHAZAM’s scope and programming flexibility.”

Professor Bruno Larue
Agricultural Econometrics Department, University of Laval
Canada

“SHAZAM 11 covers the latest in estimators, user interface, graphics...Professionals and practitioners really have a tool for doing econometrics and statistics.”

Torbjørn Lorentzen
Scientist, Bjerknes Centre for Climate Research, University of Bergen
Norway

“I have been using SHAZAM for over 25 years and it is my favorite statistical software package. It is the first program I try whenever I am looking at a new data set or working on a new research project.”

Dr. Dennis Olson
Department of Finance, American University of Sharjah
United Arab Emirates

“SHAZAM is an excellent, comprehensive package of econometrics computer programs full of useful estimation and test methods available to applied econometricians.”

Professor Toshinobu Matsuda
Agricultural Economics Department, Tottori University
Japan

“I am a longtime SHAZAM user, having used it for doctoral research and beyond. Over the years I have frequently appreciated using SHAZAM’s simple-yet-elegant and sophisticated user interface and intuitive commands in my research. Data sets are easy to upload and readily compatible with Excel. It is particularly brilliant for Panel Data with Cross Section dummy variables.

SHAZAM has proved a wonderful teaching tool: the online samples are very useful and instructive and students understand quickly using this package.

SHAZAM’s user-friendly support is great.”

Dr. Jo Voola
Faculty of Engineering, Computer Science and Mathematics
University of Western Australia
Australia
"...sound research cannot be produced merely by feeding data to a computer and saying SHAZAM."

Peter Kennedy
A Guide to Econometrics

"A casual reader may wonder whether the names of some of these programs, particularly ORACLE and SHAZAM, reflect in any way the Delphic nature of econometric predictions."

Ivor Francis
Statistical Software: A Comparative Review

"...detailed implementation in concrete computer programs or systems. Hence, names familiar to many such as...GREMLIN, TROLL, AUTOREG, SHAZAM..."

Richard E. Quandt
Handbook of Econometrics

"The easiest solution to an inconclusive bounds test is to use a program such as SHAZAM..."

Judge, Hill, Griffiths, Lütkepohl and Lee
Introduction to the Theory and Practice of Econometrics, 2nd Edition

"In instances where \(d \) falls within the inconclusive region the exact critical value \(d^* \) can be found numerically, providing appropriate computer software [e.g., SHAZAM, White(1978)] is available."

Judge, Griffiths, Hill, Lütkepohl and Lee
The Theory and Practice of Econometrics, 2nd Edition

"Beach and MacKinnon devised an iterative procedure for maximizing Equation (8-77), which has now been incorporated in White’s SHAZAM program..."

Jack Johnston
Econometric Methods, 3rd ed.

"Some Computer Programs (e.g. SHAZAM, White (1978)) allow for the estimation of \(\rho \) and provide an unconditional covariance matrix."

Fomby, Hill and Johnson
Advanced Econometric Methods

Senator: "Do you realize that I got a bill passed today that’s going to put a million people to work? You know how I did it? I said one word."

Wife: "SHAZAM?"

Senator: "No. Subcommittee."

From the movie:
The Seduction of Joe Tynan
CONTENTS

1. INTRODUCTION ..14
 SHAZAM Awards ...16

2. A CHILD’S GUIDE TO ANALYSIS WITH SHAZAM ...17

3. DATA INPUT AND OUTPUT ...31
 The FILE Command ...31
 The SAMPLE Command ..33
 The READ Command ...34
 The PRINT Command ...38
 The WRITE Command ..39
 The FORMAT and NAMEFMT Commands ...44
 Using DIF Files ..48

4. DESCRIPTIVE STATISTICS ..51
 Mean, Variance and Other Statistics ...51
 Covariance and Correlation ...52
 Testing for Equality of Mean and Variance ...53

5. PLOTS AND GRAPHS ..65
 The GRAPH Command ...65
 The AXISFMT and TIMEFMT Commands ..67
 The PLOT Command ..68

6. GENERATING VARIABLES ..73
 The GENR Command ...73
 The GEN1 Command ...83
 The IF Command ...84
 The IF1 Command ..85
 The SKIPIF Command ...85
 The ENDIF Command ...88
 The DERIV Command ...88
 The INTEG Command ...89
 Examples ..90
 Sampling Without Replacement ..90
 Systematic Sampling ...91
 Replacement of Missing Values with the Mean ...91

7. ORDINARY LEAST SQUARES ..95
 OLS Temporary Variables ...104
 Restricted Least Squares ..109
Weighted Regression...111
Detecting Influential Observations...113
Stepwise Regression ..116

8. HYPOTHESIS TESTING AND CONFIDENCE INTERVALS117
 Hypothesis Testing ...117
 Testing a Single Linear Combination of Coefficients119
 Testing More Than One Linear Combination of Coefficients121
 Testing Non-Linear Functions of Coefficients122
 The Chebychev Inequality ..123
 Confidence Intervals ...124
 Interval Estimation for a Population Mean126
 Interval Estimation for a Single Regression Coefficient127
 Interval Estimation for the Error Variance128
 Estimation of a Joint Confidence Region for Two Regression
 Coefficients ..128

9. INEQUALITY RESTRICTIONS ..131
 Linear Regression with Inequality Restrictions133
 Seemingly Unrelated Regression with Inequality Restrictions ...135

10. ARIMA MODELS ...137
 Identification ..137
 Estimation ...143
 Forecasting ..151

11. AUTOCORRELATION MODELS ..155
 Estimation With AR(1) Errors ..155
 Cochrane-Orcutt Iterative Estimation156
 Grid Search Estimation ...158
 Maximum Likelihood Estimation by the Beach-MacKinnon Method 158
 Maximum Likelihood Estimation by Grid Search158
 Nonlinear Least Squares ...159
 Tests For Autocorrelation After Correcting For AR(1) Errors159
 Estimation With AR(2) Errors ..160
 Cochrane-Orcutt Iterative Estimation160
 Grid Search Estimation ..161
 Maximum Likelihood Estimation by Grid Search161
 Nonlinear Least Squares ...161
 Estimation with Higher Order AR or MA Errors162

12. BOX-COX REGRESSIONS ...169
 The Classical Box-Cox Model ...169
The Extended Box-Cox Model ... 171
The Box-Tidwell Model ... 171
The Combined Box-Cox and Box-Tidwell Model 171
The Box-Cox Autoregressive Model ... 172
The Extended Box-Cox Autoregressive Model 174
Box-Cox with Restrictions ... 178

13. COINTEGRATION AND UNIT ROOT TESTS 181

14. DIAGNOSTIC TESTS ... 189
Tests for Autocorrelation ... 193
Tests for Heteroskedasticity ... 194
Recursive Residuals and the CUSUM and CUSUMSQ Tests 196
The CHOW Test and Goldfeld-Quandt Test 199
Hansen Tests .. 200
RESET Tests .. 201
The Jackknife Estimator ... 202

15. DISTRIBUTED-LAG MODELS ... 203
Almon Polynomial Distributed Lag Models 206
Granger Causality .. 209
Polynomial Inverse Lag Models ... 211

16. FORECASTING ... 213

17. FUZZY SET MODELS ... 225

18. GENERALIZED ENTROPY .. 229

19. GENERALIZED LEAST SQUARES ... 235

20. HETEROSKEDASTIC MODELS .. 241
Forms of Heteroskedasticity ... 241
ARCH Models .. 242
Maximum Likelihood Estimation ... 243
Examples ... 246
Testing For Heteroskedasticity ... 246
Dependent Variable Heteroskedasticity 247
ARCH(1) .. 248
Multiplicative Heteroskedasticity .. 249
Robust Standard Errors ... 249

21. MAXIMUM LIKELIHOOD ESTIMATION OF NON-NORMAL MODELS .. 251
Exponential Regression ... 252
Generalized Gamma Regression ... 252
Model Discrimination..252
Lognormal Regression ..253
Beta Regression ...253
Log-linear Models ...254
Poisson Regression...255

22. NONLINEAR REGRESSION ..259
Nonlinear Model Specification..261
Nonlinear Least Squares ..269
 Testing for Autocorrelation ..271
Maximizing a Function ..272
Nonlinear Severely Unrelated Regression ..273
Estimation with Autoregressive Errors ...274
Nonlinear Two-Stage Least Squares ..275
Nonlinear Three-Stage Least Squares ..277
Generalized Method of Moments Estimation ..279
Simulated Annealing ..283

23. NONPARAMETRIC METHODS ..287
Density Estimation..287
 The Univariate Kernel Method ..287
 The Multivariate Kernel Method ...288
Nonparametric Regression ..289
 Kernel Estimators ..289
 Locally Weighted Regression ..291
Model Evaluation ..293

24. POOLED CROSS-SECTION TIME-SERIES ...301
Cross-Section Heteroskedasticity and Time-wise Autoregression301
Lagrangian Multiplier Tests ..305
Panel-Corrected Standard Errors ...305

25. PROBIT AND LOGIT REGRESSION ...315

26. ROBUST ESTIMATION ..327
 Estimation Under Multivariate t Errors ..327
 Estimation Using Regression Quantiles ..328
 Least Absolute Error Estimation ...328
 Linear Functions of Regression Quantiles ..329
 Trimmed Least Squares ...329

27. TIME-VARYING LINEAR REGRESSION ..333

28. TOBIT REGRESSION ..339
29. TWO-STAGE LEAST SQUARES AND SYSTEMS OF EQUATIONS347
 2SLS or Instrumental Variable Estimation347
 Systems of Equations ..350
 Seemingly Unrelated Regression ..351
 Restricted Seemingly Unrelated Regression352
 Three Stage Least Squares ..352
 Iterative Estimation ..353
 Model Diagnostics ..353

30. DATA SMOOTHING, MOVING AVERAGES AND SEASONAL
 ADJUSTMENT ..363

31. FINANCIAL TIME SERIES ..369
 The STOCKGRAPH Command ...369
 The PORTFOLIO Command ...374
 The CALL and PUT Commands ...379

32. LINEAR PROGRAMMING ..385

33. QUADRATIC PROGRAMMING ..389

34. MATRIX MANIPULATION ...399
 The MATRIX Command ...399
 The COPY Command ..405

35. PRICE INDEXES ..409

36. PRINCIPAL COMPONENTS AND FACTOR ANALYSIS413
 Principal Components Regression ...417

37. PROBABILITY DISTRIBUTIONS ..421

38. SORTING DATA ..435

39. SET AND DISPLAY ..437

40. MISCELLANEOUS COMMANDS AND INFORMATION443

41. PROGRAMMING IN SHAZAM ..453
 DO-loops ...453
 Examples ...455
 Splicing Index Number Series ...455
 Computing the Power of a Test ..456
 Ridge Regression ...458
 An Exact p-value for the Durbin-Watson Test460
 Iterative Cochrane-Orcutt Estimation462
 Nonlinear Least Squares by the Rank One Correction Method464
Monte Carlo Experiments ... 466
Bootstrapping Regression Coefficients .. 468
Heteroskedastic Consistent Covariance Matrices 471
Hausman Specification Test ... 473
Non-Nested Model Testing .. 474
Solving Nonlinear Sets of Equations ... 476
Multinomial Logit Models ... 479

42. SHAZAM PROCEDURES ... 483
 SHAZAM Character Strings ... 483
 Writing a SHAZAM Procedure .. 485
 Controlling Procedure Output .. 488
 Examples .. 488
 Square Root of a Matrix ... 488
 Black-Scholes Option Pricing Model 491
 Generating Multivariate Random Numbers 495

SUMMARY OF COMMANDS ... 499

NEW FEATURES IN SHAZAM .. 509

REFERENCES .. 523
SHAZAM is a comprehensive software package for econometricians, statisticians, biometricians, engineers, sociometricians, psychometricians, politicométricians and others who use statistical techniques. The primary strength of SHAZAM is for the estimation and testing of many types of econometric and statistical models. The SHAZAM command language has great flexibility and provides capabilities for programming procedures. This Reference Manual provides detailed descriptions of the SHAZAM commands available to perform all SHAZAM analytical techniques. It contains numerous theoretical explanations, practical examples and sample code.

SHAZAM includes features for:

- data transformations, handling missing observations, matrix manipulation, evaluation of derivatives and integrals, data sorting, computation of cumulative distribution functions for a variety of probability distributions;
- descriptive statistics, calculation of price indexes, moving averages, exponential smoothing, seasonal adjustment,
- financial time series,
- ARIMA (Box-Jenkins) time series models,
- cointegration and unit root testing, Dickey-Fuller and Phillips-Perron unit root tests,
- nonparametric density estimation;
- OLS estimation, restricted least squares, weighted least squares, ridge regression, distributed lag models, estimation with autoregressive or moving average errors, estimation with heteroskedastic errors, stepwise regression
- generalized least squares
- ARCH and GARCH models,
- Box-Cox regressions,
- probit models, logit models, tobit models,
- estimation using regression quantiles (including MAD estimation),
regression with non-normal errors (including exponential regression, beta regression and Poisson regression),
regression with time varying coefficients,
nonparametric methods,
generalized entropy methods,
fuzzy set models;
linear and nonlinear hypothesis testing,
calculation of confidence intervals and ellipse plots, computation of the Newey-West autocorrelation consistent covariance matrix,
regression diagnostic tests (including tests for heteroskedasticity, CUSUM tests, RESET specification error tests), computation of p-values for many test statistics (including the p-value for the Durbin-Watson test),
nonlinear least squares,
simulated annealing
estimation of systems of linear and nonlinear equations by SURE, 2SLS and 3SLS,
generalized method of moments (GMM) estimation,
panel data and pooled time-series cross-section methods;
principal components and factor analysis, principal components regression,
minimizing and maximizing nonlinear functions,
solving nonlinear simultaneous equations.
linear programming
quadratic programming
forecasting;

SHAZAM has thousands of users in more than 90 countries and is one of the most popular econometric software packages in the world. It can be found at the Northernmost (University of Tromso, Norway) and Southernmost (University of Otago, New Zealand) Universities in the world and in locations from Antarctica to Greenland.

Users should always be aware of the version of SHAZAM being used. This manual describes Version 11 of SHAZAM. Some options and commands described in this manual were not available in earlier versions so users should be certain an old version of SHAZAM is not used with this manual. See the chapter NEW FEATURES IN SHAZAM for further details.
SHAZAM AWARDS

A list of articles that cite SHAZAM is available at the SHAZAM website.

SHAZAM Hall Of Fame

SHAZAM users who have cited SHAZAM in at least 5 refereed printed articles during their careers will be granted membership into the SHAZAM Hall of Fame. There are 3 categories:

- **Regressor** - Cite SHAZAM in 5 articles
- **Executive Regressor** - Cite SHAZAM in 10 articles
- **Lifetime Achievement Award** - Cite SHAZAM in 15 or more articles

Members of the SHAZAM Hall of Fame are entitled to discounts or free upgrades on various SHAZAM products.
2. A CHILD'S GUIDE TO ANALYSIS WITH SHAZAM

"Difficult? A child could do it."

Arthur S. Goldberger (1930-2009)
Professor of Economics, 1971

This chapter should be read by all users as it provides step-by-step basic information on how to run SHAZAM techniques, illustrated using the Ordinary Least Squares (OLS) regression technique.

SHAZAM Data

A simple data set to analyze is the textile demand data set from Theil [1971, p. 102]. There are 17 years of observations on the variables *YEAR*, *CONSUME*, *INCOME* and *PRICE*. The data can be entered in a file, say **MYDATA**, and a listing of the file is:

```
1923 99.2 96.7 101.0
1924 99.0 98.1 100.1
1925 100.0 100.0 100.0
1926 111.6 104.9 90.6
1927 122.2 104.9 86.5
1928 117.6 109.5 89.7
1929 121.1 110.8 90.6
1930 136.0 112.3 82.8
1931 154.2 109.3 70.1
1932 153.6 105.3 65.4
1933 158.5 101.7 61.3
1934 140.6 95.4 62.5
1935 136.2 96.4 63.6
1936 168.0 97.6 52.6
1937 154.3 102.4 59.7
1938 149.0 101.6 59.5
1939 165.5 103.8 61.3
```

Setting the Sample Size

The first SHAZAM command is usually **SAMPLE** to specify the sample size. The sample size is the number of observations in the data set. The general format of the **SAMPLE** command is:

SAMPLE beg end
where \textit{beg} is the first observation to be used (usually 1), and \textit{end} is the last observation. If your data has 17 observations your \textbf{SAMPLE} command will look like:

\begin{verbatim}
sample 1 17
\end{verbatim}

This \textbf{SAMPLE} command sets the sample size to 17 observations and the data will be placed in observations 1 through 17 (because \textit{beg} is specified as 1).

\textit{Data Input}

Having set the sample size, you are ready to enter your data with the \textbf{READ} command. In general, the \textbf{READ} command will look like:

\begin{verbatim}
READ(filename) vars / OPTIONS
\end{verbatim}

where \textit{filename} is the name of the data file (this is optional), \textit{vars} is a list of variable names for the data and \textit{options} is a list of desired options. Variable names may be up to 8 characters long and must consist only of letters or numbers and start with a letter. If the data on \textit{YEAR}, \textit{CONSUME}, \textit{INCOME} and \textit{PRICE} is stored in the file named \textbf{MYDATA} the \textbf{READ} command would be:

\begin{verbatim}
read (mydata) year consume income price
\end{verbatim}

Alternatively, it may be convenient to enter the data directly in a SHAZAM command file following the \textbf{READ} command so no data filename is used. The SHAZAM command file would contain the lines:

\begin{verbatim}
read year consume income price
1923 99.2 96.7 101.0
1924 99.0 98.1 100.1
1925 100.0 100.0 100.0
1926 111.6 104.9 90.6
1927 122.2 104.9 86.5
1928 117.6 109.5 89.7
1929 121.1 110.8 90.6
1930 136.0 112.3 82.8
1931 154.2 109.3 70.1
1932 153.6 105.3 65.4
1933 158.5 101.7 61.3
1934 140.6 95.4 62.5
1935 136.2 96.4 63.6
1936 168.0 97.6 52.6
1937 154.3 102.4 59.7
1938 149.0 101.6 59.5
1939 165.5 103.8 61.3
\end{verbatim}
Normally, data is typed observation by observation where the observations for all variables begin on a new line. You may use more than one line per observation. If your data is set up variable by variable instead of observation by observation you will have to use the **BYVAR** option on your **READ** command. For details on the **BYVAR** option see the chapter **DATA INPUT AND OUTPUT**. All variables entered on a **READ** command must have an equal number of observations. In the above example, the first column read will be stored in variable **YEAR**, the next in **CONSUME**, and so on.

NOTE: Be sure that the number of variables you give on the **READ** command matches the number of variables in your data.

The **STAT** Command

The **STAT** command will print some useful descriptive statistics including the means, standard deviations, variances, minimums and maximums for the variables listed. The format of the **STAT** command is:

```
STAT vars
```

where **vars** is a list of variables. There are many options available on the **STAT** command which are described in the chapter **DESCRIPTIVE STATISTICS**.

The **OLS** Command

The **OLS** command will run an ordinary least squares regression. The format of the **OLS** command is:

```
OLS depvar indeps / OPTIONS
```

where **depvar** is the name of the dependent variable, **indeps** are the names of the independent variables and **options** is a list of options desired. A very simple **OLS** command might look like this:

```
ols consume income price
```

This will run a regression of the variable **CONSUME** on variables **INCOME** and **PRICE**. A **CONSTANT** is automatically included in the regression. No options were requested. There are many available options which are described in the chapter **ORDINARY LEAST SQUARES**. Some common ones are:
ANOVA Prints the ANalysis Of VAriance tables
GF Prints Goodness-of-Fit statistics testing for normality of residuals
LIST Lists residuals plus residual summary statistics
NOCONSTANT Suppresses the intercept
PCOV Prints a COVariance matrix of coefficients
RSTAT Prints Residual summary STATistics (Durbin-Watson etc.)

Users should note that the LIST option will substantially increase the amount of output, particularly if the sample size is large. An example of an OLS command with options is:

```
ols consume income price / rstat pcov
```

This example runs an OLS regression of CONSUME on INCOME, PRICE and a CONSTANT and prints residual summary statistics and a covariance matrix of coefficients along with the standard output. Do not forget to separate the options from the list of variables by a slash (/). The options may be listed in any order.

The SHAZAM Command File

The command file for a complete SHAZAM run might look like:

```
* i hope this works!
sample 1 17
read year consume income price
  1923  99.2  96.7 101.0
  1924  99.0  98.1 100.1
  1925 100.0 100.0 100.0
  1926 111.6 104.9  90.6
  1927 122.2 104.9  86.5
  1928 117.6 109.5  89.7
  1929 121.1 110.8  90.6
  1930 136.0 112.3  82.8
  1931 154.2 109.3  70.1
  1932 153.6 105.3  65.4
  1933 158.5 101.7  61.3
  1934 140.6  95.4  62.5
  1935 136.2  96.4  63.6
  1936 168.0  97.6  52.6
  1937 154.3 102.4  59.7
  1938 149.0 101.6  59.5
  1939 165.5 103.8  61.3
stat consume income price
ols consume income price / rstat pcov
ols consume income
stop
```
NOTE: The line in the example beginning with an asterisk (*) is a SHAZAM comment. You can insert these at various places in the run, except within the data. Comment lines are printed on the output and sometimes help document the output. Comment lines must begin with an asterisk (*) in column 1. The rest of the line may contain anything.

In this simple example there are 4 input variables \textit{YEAR, CONSUME, INCOME} and \textit{PRICE} and 17 observations. The \textbf{SAMPLE} command sets the sample size to 17 observations. The \textbf{STAT} command is used to get descriptive statistics of the variables. Two \textbf{OLS} regressions are run. Both regressions use \textit{CONSUME} as the dependent variable.

The \textbf{STOP} command is a signal to SHAZAM that it has reached the end of the commands.

\textbf{SHAZAM output from the STAT Command}

The output for the \textbf{STAT} command is shown below. Note that SHAZAM commands typed by the user appear in SHAZAM output following the symbol |_.

\begin{verbatim}
| STAT CONSUME INCOME PRICE
\hline
NAME N MEAN ST. DEV VARIANCE MINIMUM MAXIMUM
\hline
CONSUME 17 134.51 23.577 555.89 99.000 168.00
INCOME 17 102.98 5.3010 28.100 95.400 112.30
PRICE 17 76.312 16.866 284.47 52.600 101.00
\hline
\end{verbatim}

For a variable \(X\) with \(N\) observations denoted by \(X_t, t = 1, \ldots, N\) the statistics listed by the \textbf{STAT} command are calculated as:

- \textbf{MEAN}
 \[
 \bar{X} = \frac{1}{N} \sum_{t=1}^{N} X_t
 \]

- \textbf{VARIANCE}
 \[
 \sigma^2_X = \frac{1}{N-1} \sum_{t=1}^{N} (X_t - \bar{X})^2 = \frac{1}{N-1} \left[\sum_{t=1}^{N} X_t^2 - N \bar{X}^2 \right]
 \]
 \[
 \sqrt{\sigma^2_X} \quad \text{(Standard Deviation)}
 \]

- \textbf{ST. DEV.}

- \textbf{MINIMUM} the smallest value of \(X_t\)

- \textbf{MAXIMUM} the largest value of \(X_t\)
SHAZAM output from the OLS Command

The output for the first **OLS** command is:

```
| OLS CONSUME INCOME PRICE / RSTAT FCOV
OLS ESTIMATION
17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO:  1,  17

R-SQUARE =  .9513  R-SQUARE ADJUSTED =  .9443
VARIANCE OF THE ESTIMATE-SIGMA**2 =  30.951
STANDARD ERROR OF THE ESTIMATE-SIGMA =  5.5634
SUM OF SQUARED ERRORS-SSE=  433.31
MEAN OF DEPENDENT VARIABLE =  134.51
LOG OF THE LIKELIHOOD FUNCTION = -51.6471

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED STANDARD T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>COEFFICIENT</td>
<td>ERROR</td>
</tr>
<tr>
<td>INCOME</td>
<td>1.0617</td>
<td>.2667</td>
</tr>
<tr>
<td>PRICE</td>
<td>-1.3830</td>
<td>.8381E-01</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>130.71</td>
<td>27.09</td>
</tr>
</tbody>
</table>

VARIANCE-COVARIANCE MATRIX OF COEFFICIENTS
INCOME  .71115E-01
PRICE   -.39974E-02  .70248E-02
CONSTANT -7.0185     -.12441  734.10
          INCOME  PRICE  CONSTANT

DURBIN-WATSON = 2.0185  VON NEUMANN RATIO = 2.1447  RHO = -.18239
RESIDUAL SUM = -12434E-12  RESIDUAL VARIANCE =  30.951
SUM OF ABSOLUTE ERRORS=  72.787
R-SQUARE BETWEEN OBSERVED AND PREDICTED = .9513
RUNS TEST:  7 RUNS,  9 POSITIVE,  8 NEGATIVE, NORMAL STATISTIC = -1.2423
```

The calculations used for the **OLS** output are now described. The linear regression model can be written as:

\[Y_t = \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + \ldots + \beta_K X_{Kt} + \varepsilon_t \quad \text{for} \quad t = 1, \ldots, N \]

where there are \(N \) observations and \(Y_t \) is observation \(t \) on the dependent variable, \(X_{kt} \) is observation \(t \) on the \(k^{th} \) explanatory variable for \(k = 1, \ldots, K \), \(\beta_k \) are parameters to estimate and \(\varepsilon_t \) is a random error that is assumed to have zero mean and variance \(\sigma^2 \).

In matrix notation this can be stated as:

\[Y = X\beta + \varepsilon \]

where \(\beta \) is a \(K \times 1 \) vector of parameters, \(Y = [Y_1 \ Y_2 \ldots \ Y_N]' \) and \(X \) is the \(N \times K \) matrix:
A CHILD'S GUIDE TO ANALYSIS WITH SHAZAM

\[X = \begin{bmatrix}
X_{11} & X_{21} & \cdots & X_{K1} \\
X_{12} & X_{22} & \cdots & X_{K2} \\
\vdots & \vdots & \ddots & \vdots \\
X_{1N} & X_{2N} & \cdots & X_{KN}
\end{bmatrix} \]

If a constant term is included in the model then one of the columns of the \(X \) matrix will be a column where every element is a 1. SHAZAM automatically makes the last column of the \(X \) matrix the one that corresponds to the constant term.

The **OLS** estimated coefficients are calculated as:

\[\hat{\beta} = (X'X)^{-1}X'Y \]

The \(N \times 1 \) vector of **OLS** residuals denoted by \(e \) are obtained as:

\[e = Y - X\hat{\beta} \]

and the predicted values are:

\[\hat{Y} = X\hat{\beta} \]

With \(\bar{Y} \) the mean of the dependent variable the deviations from the sample mean are denoted by:

\[y_t = Y_t - \bar{Y} \quad \text{and} \quad \hat{y}_t = \hat{Y}_t - \bar{Y} \quad \text{for} \ t = 1, \ldots, N \]

The output from the **OLS** command includes:

R-SQUARE

\[R^2 = 1 - \frac{\sum_{t=1}^{N} e_t^2}{\sum_{t=1}^{N} (Y_t - \bar{Y})^2} = 1 - \frac{e'e}{y'y} \]

R-SQUARE ADJUSTED

\[\bar{R}^2 = 1 - \left(1 - R^2\right) \frac{N - 1}{N - K} \]

VARIANCE OF THE ESTIMATE-SIGMA

\[\sigma^2 = \frac{1}{N - K} \sum_{t=1}^{N} e_t^2 = \frac{e'e}{N - K} \]

STANDARD ERROR OF THE ESTIMATE-SIGMA

\[\hat{\sigma} = \sqrt{\sigma^2} \]

SUM OF SQUARED ERRORS-SSE

\[\sum_{t=1}^{N} e_t^2 = e'e \]
MEAN OF DEPENDENT VARIABLE

\[
\bar{Y} = \frac{1}{N} \sum_{t=1}^{N} Y_t
\]

With the assumption that the errors are normally distributed the log-likelihood function for the linear regression model can be expressed as:

\[
- \frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} (Y - X\hat{\beta})'(Y - X\hat{\beta})
\]

On the SHAZAM output the log of the likelihood function is evaluated as:

\[
- \frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln(\hat{\sigma}^2) - \frac{N}{2}
\]

where \(\hat{\sigma}^2 = \frac{e'e}{N} \)

The above uses the result:

\[
(Y - X\hat{\beta})'(Y - X\hat{\beta}) / \hat{\sigma}^2 = e'e / \hat{\sigma}^2 = N
\]

When the NOCONSTANT option is used on the OLS command the SHAZAM output reports the raw moment r-square calculated as:

\[
1 - \frac{e'e}{Y'Y}
\]

The variance-covariance matrix of the OLS parameter estimates (printed with the PCOV option) is estimated as:

\[
V(\hat{\beta}) = \hat{\sigma}^2 (X'X)^{-1}
\]

Denote \(V(\hat{\beta}_k) \) as the kth diagonal element of the \(V(\hat{\beta}) \) matrix. For the OLS estimated coefficients the SHAZAM output reports:

\[
\text{STANDARD ERROR (of } \hat{\beta}_k \text{)} \quad \text{SE}_k = \sqrt{V(\hat{\beta}_k)} \quad \text{for } k = 1, \ldots, K
\]

\[
\text{T-RATIO} \quad t_k = \frac{\hat{\beta}_k}{\text{SE}_k}
\]

\[
\text{PARTIAL CORRELATION} \quad \frac{t_k}{\sqrt{t_k^2 + N - K}}
\]
STANDARDIZED COEFFICIENT

$$\hat{\beta}_k \left(\frac{\hat{\sigma} x_k}{\hat{\sigma} Y} \right)$$

ELASTICITY AT MEANS

$$E_k = \hat{\beta}_k \left(\frac{\bar{X}_k}{\bar{Y}} \right)$$

The p-values reported on the OLS output are the tail probabilities for a two-tail test of the null hypothesis $H_0: \beta_k = 0$. The p-value is the exact level of significance of a test statistic. If the p-value is less than a selected level of significance (say 0.05) then there is evidence to reject H_0. For a discussion of p-values see any good econometrics textbook.

Residual Statistics

If the RSTAT, LIST, or MAX options are used the SHAZAM output also includes a number of residual statistics calculated as:

<table>
<thead>
<tr>
<th></th>
<th>DW</th>
<th>VON NEUMANN RATIO</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DURBIN WATSON</td>
<td>$DW = \frac{\sum_{t=2}^{N} (e_t - e_{t-1})^2}{\sum_{t=1}^{N} e_t^2}$</td>
<td>VON NEUMANN RATIO</td>
<td>$DW \left(\frac{N}{N - 1} \right)$</td>
</tr>
<tr>
<td>RHO</td>
<td>$\hat{\rho} = \frac{\sum_{t=2}^{N} e_t e_{t-1}}{\sum_{t=2}^{N} e_t^2}$</td>
<td>RESIDENTIAL SUM</td>
<td>$\sum_{t=1}^{N} e_t$</td>
</tr>
<tr>
<td>RESIDUAL VARIANCE</td>
<td>$\hat{\sigma}^2 = \frac{1}{N - K} \sum_{t=1}^{N} e_t^2$</td>
<td>SUM OF ABSOLUTE ERRORS</td>
<td>$\sum_{t=1}^{N}</td>
</tr>
</tbody>
</table>

The **R-square between observed and predicted** is calculated as:

$$R^2 = \frac{\left(\sum \hat{y}_t y_t \right)^2}{\sum \hat{y}_t^2 \sum y_t^2}$$

For discussion on goodness-of-fit measures see, for example, Judge, Griffiths, Hill, Lütkepohl and Lee [1985, pp. 29-31] and Kvalseth [1985].

The runs test (discussed in, for example, Gujarati [2003, p. 465]) gives a test for independent errors. A run is defined as an uninterrupted sequence of either positive or negative residuals. Let N_1 be the total number of positive residuals and N_2 be the total number of negative residuals (so that $N_1 + N_2 = N$). Let n be the total number of runs. The **RUNS TEST** reported on the SHAZAM output is computed as:
\[
\frac{n - E(n)}{\sigma_n} \quad \text{where} \quad E(n) = \frac{2N_1N_2}{N_1 + N_2} + 1 \quad \text{and} \quad \sigma_n^2 = \frac{2N_1N_2(2N_1N_2 - N_1 - N_2)}{(N_1 + N_2)^2 (N_1 + N_2 - 1)}
\]

Under the null hypothesis of independence and assuming \(N_1>10\) and \(N_2>10\) the runs test statistic has an asymptotic standard normal distribution. If \(N_1\) or \(N_2\) are less than 10 then tables of critical values available in Gujarati [2003, pp. 974-5] can be consulted.

\section*{Model Selection Test Statistics and Analysis of Variance}

When the \texttt{ANOVA} option is specified the SHAZAM output will also include a series of model selection test statistics as well as two analysis of variance tables. The output from the model selection tests will appear as:

<table>
<thead>
<tr>
<th>Model Selection Tests</th>
<th>See Judge et al. (1985, p.242)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akaike (1969) Final Prediction Error - FPE</td>
<td>36.413</td>
</tr>
<tr>
<td>(FPE is also known as Amemiya Prediction Criterion - PC)</td>
<td></td>
</tr>
<tr>
<td>Akaike (1973) Information Criterion - LOG AIC</td>
<td>3.5912</td>
</tr>
<tr>
<td>Schwarz (1978) Criterion - LOG SC</td>
<td>3.7382</td>
</tr>
<tr>
<td>Craven-Wahba (1979) Generalized Cross Validation - GCV</td>
<td>37.583</td>
</tr>
<tr>
<td>Hannan and Quinn (1979) Criterion</td>
<td>36.811</td>
</tr>
<tr>
<td>Shibata (1981) Criterion</td>
<td>34.485</td>
</tr>
<tr>
<td>Schwarz (1978) Criterion - SC</td>
<td>42.023</td>
</tr>
</tbody>
</table>

With \(\hat{\sigma}^2 = \frac{e'e}{N}\) the calculations for the above statistics are:

\texttt{Akaike (1969) Final Prediction Error - FPE} \quad \hat{\sigma}^2 \left(\frac{N + K}{N - K}\right)

\texttt{Akaike (1973) Information Criterion - LOG AIC} \quad \ln \hat{\sigma}^2 + \frac{2K}{N}

\texttt{Schwarz (1978) Criterion - LOG SC} \quad \ln \hat{\sigma}^2 + \frac{K \ln N}{N}

\texttt{Craven-Wahba (1979) Generalized Cross Validation} \quad \hat{\sigma}^2 \left(1 - \frac{K}{N}\right)^{-2}

\texttt{Hannan and Quinn (1979) Criterion} \quad \hat{\sigma}^2 \left(\ln N\right)^{2K/N}

\texttt{Rice (1984) Criterion} \quad \hat{\sigma}^2 \left(1 - \frac{2K}{N}\right)^{-1}
SHIBATA (1981) CRITERION
\[\hat{\sigma}^2 \left(\frac{N + 2K}{N} \right) \]

SCHWARZ (1978) CRITERION - SC
\[\hat{\sigma}^2 \frac{N^K}{N} \]

AKAIKE (1974) INFORMATION CRITERION - AIC
\[\hat{\sigma}^2 \exp \left(\frac{2K}{N} \right) \]

The output for the analysis of variance tables is:

<table>
<thead>
<tr>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGRESSION</td>
<td>y'y - e'e</td>
<td>K - 1</td>
<td>(y'y - e'e)</td>
</tr>
<tr>
<td>ERROR</td>
<td>e'e</td>
<td>N - K</td>
<td>(e'e)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>y'y</td>
<td>N - 1</td>
<td>(y'y)</td>
</tr>
</tbody>
</table>

The calculations for this output are:

ANALYSIS OF VARIANCE - FROM MEAN

<table>
<thead>
<tr>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGRESSION</td>
<td>y'y - e'e</td>
<td>K - 1</td>
<td>(y'y - e'e)</td>
</tr>
<tr>
<td>ERROR</td>
<td>e'e</td>
<td>N - K</td>
<td>(e'e)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>y'y</td>
<td>N - 1</td>
<td>(y'y)</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE - FROM ZERO

<table>
<thead>
<tr>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGRESSION</td>
<td>Y'Y - e'e</td>
<td>K</td>
<td>(Y'Y - e'e)</td>
</tr>
<tr>
<td>ERROR</td>
<td>e'e</td>
<td>N - K</td>
<td>(e'e)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Y'Y</td>
<td>N</td>
<td>(Y'Y)</td>
</tr>
</tbody>
</table>
Tests for Normality of the Residuals

If the GF option is specified some tests for normality of the residuals are reported on the SHAZAM output as:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of Skewness</td>
<td>-0.0343 with standard deviation 0.5497</td>
</tr>
<tr>
<td>Coefficient of Excess Kurtosis</td>
<td>-0.8701 with standard deviation 1.0632</td>
</tr>
<tr>
<td>Jarque-Bera Normality Test - Chi-Square (2 DF)</td>
<td>0.6662 P-value= 0.717</td>
</tr>
<tr>
<td>Goodness of Fit Test for Normality of Residuals</td>
<td>0.4 2.3 5.8 5.8 2.3 0.4</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>1.1126 with 1 degrees of freedom, P-value= 0.292</td>
</tr>
</tbody>
</table>

For the residuals, the sample k^{th} central moments are:

$$m_k = \frac{1}{N} \sum_{t=1}^{N} (e_t - \bar{e})^k$$

Define:

$$S_k = \frac{1}{N} \sum_{t=1}^{N} e_t^k$$

for $k = 1, 2, 3, 4$

The sample central moments can be computed as:

$$m_2 = S_2 - S_1^2$$
$$m_3 = S_3 - 3S_1S_2 + 2S_1^3$$
$$m_4 = S_4 - 4S_1S_3 + 6S_1^2S_2 - 3S_1^4$$

A measure of skewness is:

$$\gamma_1 = \frac{m_3}{m_2^{3/2}}$$

and a measure of excess kurtosis is:

$$\gamma_2 = \frac{m_4}{m_2^2} - 3$$

The above statistics are biased estimators of skewness and kurtosis that can be used for large N. Unbiased estimators of skewness and kurtosis are described in, for example, Smillie [1966]. The SHAZAM calculations incorporate these small sample adjustments as follows.
The coefficient of skewness is calculated as: \[g_1 = \frac{k_3}{k_2^{3/2}} \]

and the coefficient of excess kurtosis is calculated as: \[g_2 = \frac{k_4}{k_2^2} \]

where the k-statistics are:

\[k_2 = \frac{N}{N-1} m_2 \quad , \quad k_3 = \frac{N^2}{(N-1)(N-2)} m_3 \quad \text{and} \]
\[k_4 = \frac{N^2}{(N-1)(N-2)(N-3)} [(N+1)m_4 - 3(N-1)m_2^2] \]

If the residuals are normally distributed then \(g_1 \) and \(g_2 \) have zero means and standard deviations:

\[\sigma_{g_1} = \sqrt{\frac{6N(N-1)}{(N-2)(N+1)(N+3)}} \quad \text{and} \]
\[\sigma_{g_2} = \sqrt{\frac{24N(N-1)^2}{(N-3)(N-2)(N+3)(N+5)}} \]

The chi-square goodness of fit test for normality of residuals is computed by dividing the residuals into \(m \) groups. The number of groups is automatically set by SHAZAM based on the sample size. The observed frequency of residuals in group \(i \) is denoted by \(o_i \). The number of values theoretically expected in group \(i \) if the residuals are normally distributed is denoted by \(d_i \). The test statistic is:

\[\chi^2 = \sum_{i=1}^{m} \frac{(d_i - o_i)^2}{d_i} \]

Under the hypothesis of normality the test statistic can be compared with a \(\chi^2 \) distribution with \(m-K-2 \) degrees of freedom. Further discussion of the goodness of fit test is in, for example, Klein [1974, p.372].
The Jarque-Bera [1987] test statistic is calculated as:

$$N \left[\frac{\gamma_1^2}{6} + \frac{\gamma_2^2}{24} \right]$$

In large samples, under the null hypothesis of normally distributed residuals, the test statistic can be compared with a chi-square distribution with 2 degrees of freedom.

More Information

Detailed command descriptions are in the chapters that follow. Users may also find it helpful to review the *MISCELLANEOUS COMMANDS AND INFORMATION* chapter. It gives some of the "rules and regulations" to follow when running SHAZAM.
3. DATA INPUT AND OUTPUT

"I have traveled the length and breadth of this country and talked with the best people, and I can assure you that data processing is a fad that won't last out the year."

The editor in charge of business books for Prentice Hall, 1957

This chapter provides information on how to assign a FILE, set a SAMPLE period, and READ, PRINT, and WRITE SHAZAM data.

THE FILE COMMAND

A SHAZAM session may typically require a command file and one or more data files. Other types of files include output files and procedure files. It may be necessary to specify the location of files or to assign a particular file to a SHAZAM unit before it can be used. The FILE command is used whenever some action is required on a particular file.

The format of the FILE command is:

FILE option filename

where option is either one of the keywords described below or an input-output unit number (range is 11-49).

FILE CD folder Change the current directory to the specified folder (or directory).

FILE CLOSE filename Closes the specified filename. This is usually only needed if you wish to re-assign a file for another purpose.

FILE DELETE filename Delete the specified filename.

FILE INPUT filename Reads SHAZAM commands from filename.

FILE KEYBOARD filename Makes a copy of all commands typed on a keyboard and writes them into filename.
FILE LIST filename
Lists the specified filename on the screen.

FILE OUTPUT filename
Puts the output in the assigned filename. If used, this is often the first FILE command. No output will appear on the screen.

FILE PATH pathname
Specifies a directory path to append to all filenames used in subsequent FILE, READ or WRITE commands or for gnuplot files.

FILE PLOTPATH pathname
Specifies a directory path for the gnuplot program.

FILE PRINT filename
Prints the specified filename on a printer (may not work on all computers).

FILE PROC filename
Loads a SHAZAM procedure from the specified filename.

FILE PROCPATH pathname
Specifies a directory path to use to search for SHAZAM procedures.

FILE PWD
Print working directory. This command displays the pathname of the current folder (or directory).

FILE SCREEN filename
Puts the output in the assigned filename and simultaneously displays the output on the computer screen. Alternative to FILE OUTPUT command.

FILE TEMP pathname
Specifies a directory path to use for creating and writing to temporary scratch files.

There are occasions (described in this manual) when a file must be assigned to an input-output unit number. Any unit number from 11-49 is available. Unit numbers are sometimes required as some SHAZAM commands do not allow you to write the full filename and are expecting a unit number instead. In this case you must first use the FILE command to assign a unit number to the file then use the unit number instead of the filename in any further SHAZAM commands. For example:

file 11 mydata
If the file is binary (as is the case for the OUT= option in SYSTEM and NL problems or the BINARY option on a WRITE command) a decimal point (.) should be placed next to the unit number. For example:

```
file 12. dump.dat
```

THE SAMPLE COMMAND

The SAMPLE command has the format:

```
SAMPLE beg end
```

where `beg` and `end` are numbers specifying the beginning and ending observations. For example, to input the first 10 observations of the data with the READ command the following SAMPLE command should be used:

```
sample 1 10
```

The SAMPLE command should not set a sample size larger than the number of observations available in the data.

An Expanded Form of the SAMPLE command can be used after all the data has been read to control which observations are used for estimation. Note, however that the Expanded Form is not available for use with the READ command described below. In the Expanded Form you can select certain groups of observations. For example:

```
sample 1 8 11 15
```

would skip observations 9 and 10. Another example is:

```
sample 1 1 5 5 12 12 15 15 20 20
```

which would only use observations 1, 5, 12, 15, and 20.

With time series data the SAMPLE command can specify dates. This form of the SAMPLE command is described in the chapter MISCELLANEOUS COMMANDS AND INFORMATION.
THE READ COMMAND

The READ command inputs SHAZAM data and assigns variable names. When data is not in a separate file the data directly follows the READ command. However, if the data is in a separate file the READ command must specify the file containing the data with either a filename or unit number. If a unit number is used there must be a previous FILE command which assigns the file to the unit number.

This command is for working with Fixed Format or Free Format numeric or character data or for working with Data Interchange Format (DIF) files.

Possible formats for the READ command are:

READ vars / OPTIONS

READ (filename) vars / OPTIONS

FILE unit filename
READ (unit) vars / OPTIONS

where vars is a list of variable names and OPTIONS is a list of desired options (see details below). In the first case, no unit number or filename is specified so the data must immediately follow the READ command. The second case specifies a filename for the data set. The third method specifies a unit number which was assigned on a previous FILE command. When the NAMES option is used the vars list is not required and the variable names must be included as the first line of the data set.

An example of loading a data set from the data file MYDATA is:

 sample 1 17
 read(mydata) year consume income price

An example of a READ command where the data file MYDATA is assigned to unit 11, and contains 4 variables is the following:

 file 11 mydata
 sample 1 17
 read(11) year consume income price
This method may not work on binary files on some operating systems and instead the `FILE` command with the decimal point following the unit number must be used.

Some computer programs (but not SHAZAM!) will interpret a "." as a missing value. If your data file has missing data you must use an editor to change the "." to a numerical missing value. For example, you may want to set all the missing data to the value of -99999 which is the SHAZAM default missing data code. For more information, see the `SET MISSVALU=` command described in the chapter `SET AND DISPLAY`.

The following options are available on the `READ` command:

BINARY
Used when the data is in Double Precision `BINARY` (unformatted). If the `FILE` command is used to assign the `BINARY` file, follow the instructions above to include a "." after the unit number on the `FILE` command. For example, the binary file `DUMP.DAT` can be assigned with:

```shazam
FILE 11. DUMP.DAT
```

BYVAR
Used when the data is to be read variable `BY VARiable` rather than observation by observation. When this option is used, the data for each new variable must begin on a new line. If this option is not used, the data for each new observation must begin on a new line. Observations deleted by the `SKIPIF` command or the expanded form of the `SAMPLE` command are included when this option is used.

CLOSE
`CLOSEs` a file that was opened for the `READ` or `WRITE` command. Most operating systems do not require that files be closed, but sometimes it is desirable to do so to free up memory or a unit number. If this option is used, the file will no longer be assigned to the unit number as specified with the `FILE` command.

DIF
Reads data from a DIF file. DIF files can be created by spreadsheet programs. Refer to the section on `USING DIF FILES` in this chapter. This option is automatically in effect for filenames with the `.DIF` extension.

EOF
Forces SHAZAM to read to the End Of the data File regardless of the `SAMPLE` command in effect. This is the default if no `SAMPLE` command has been previously specified.
FORMAT Data will be read in according to the FORMAT previously specified on the FORMAT command. The format will be stored in a SHAZAM variable called FORMAT. Details on the FORMAT command are given later in this chapter.

LIST LISTs all data read. This option is equivalent to a READ command together with a PRINT command. Details on PRINT are given below.

NAMES Specifies that the variable names are included as the first line in the data set. When this option is used the list of variable names is not required on the READ command. The first line of the data set cannot exceed 130 columns. A line terminated with & indicates that the next line is a continuation line.

REWIND/NOREWIND By default the READ command loads the data set starting at the first record of the data file. If multiple READ commands are used to load data sequentially from a data file, then the NOREWIND option must be specified.

BEG=, END= Sets a sample range which overrides the sample size set on the latest SAMPLE command. The sample size set by these options will only be used for the current READ command. Subsequent problems will be performed according to the sample range set by the latest SAMPLE command.

CHARVARS= Specifies the number of character variables. This option allows the input of character variables without using the FORMAT option. The character variables must be the leading variables in the data set. The data is read by recognizing blanks or commas as delimiters. If the character variable contains embedded blanks then the variable must be enclosed by quotes " ".

ROWS=, COLS= Specifies the number of ROWS and COLumns when a matrix is being read in. Only one matrix can be read in on a given READ command and if a matrix is being read in, no other variables may be read in on that READ command. SKIPIF commands are not in effect when a matrix is read. The beginning observation on the SAMPLE command is used as the first row number for the matrix. Use the option BEG=1 to ensure that the matrix begins at row 1.
SKILINES = SKIPs the number of LINES specified before reading in any data. It is used if a data file contains a certain number of lines such as labels or comments which need to be skipped before reading in the data.

Reading from Several Data Files

If you use READ commands to read from several files, the command file might look like:

```
sample beg1 end1
read(data1) vars1
sample beg2 end2
read(data2) vars2
sample beg3 end3
read(data3) vars3
```

When the second READ command is encountered the first data file is closed. When a filename is specified on the READ or WRITE command the file is closed when another READ or WRITE command specifies a filename. If a unit number is specified then the files will stay assigned to each unit as shown in the next list of SHAZAM commands.

```
file 11 data1
file 12 data2
file 13 data3
sample beg1 end1
read(11) vars1
sample beg2 end2
read(12) vars2
sample beg3 end3
read(13) vars3
```

This method uses up three input-output units. On some computer systems there may be a limit on the number of open data files.

Using Microsoft Excel Files

To import data from other data sources such as Microsoft Excel files (.xls or .xlsx) please use the SHAZAM Environment to open the file directly into the Data Editor and then either save it as SHAZAM Data or add it to your current Workspace.

Once the file has been added to the current workspace it can be set to be automatically read using the AUTOmaticREAD facility. This facility is useful for reading all the data from a dataset but requires variable names be placed on the first line of the data set.
The SHAZAM Data Editor offers the ability to rename single or multiple variables.

THE PRINT COMMAND

The PRINT command is used to list variables on the screen or the SHAZAM output file. Note that this command does not direct output to the printer. The PRINT command has the following format:

\[\text{PRINT vars / OPTIONS} \]

where \(\text{vars} \) is a list of variable names and \(\text{OPTIONS} \) is a list of desired options. The available options on the PRINT command are:

BYVAR Specified variables will be printed variable BY VARiable rather than observation by observation. If only one variable is printed this option is automatically in effect. It can be turned off with NOBYVAR. If BYVAR is specified, observations that have been omitted either with SKIPIF command or the expanded form (an example is given later in this chapter) of the SAMPLE command will also be printed. The SET BYVAR command will make BYVAR the default for the PRINT and WRITE commands.

FORMAT The data will be written according to the format previously specified on the FORMAT command. The format will be stored in a variable called FORMAT. Details on the FORMAT command are given later in this chapter.

NONAMES Omits printing the heading of variable NAMES.

WIDE/ NOWIDE WIDE uses 120 columns and NOWIDE uses 80 columns. The default setting is described in the chapter SET AND DISPLAY.

BEG=, END= Only the observations within the range specified by BEG= and END= will be printed. If these are not specified, the range from the SAMPLE command is used.
THE WRITE COMMAND

Selected data from a SHAZAM run can be written to a file by using the `WRITE` command. The `WRITE` command has the format:

\[\text{WRITE} (\text{filename}) \vars / \text{OPTIONS} \]

or

\[\text{FILE} \ \text{unit} \ \text{filename} \]
\[\text{WRITE}(\text{unit}) \vars / \text{OPTIONS} \]

where `unit` is a unit number (assigned to a file with an operating system command or the SHAZAM `FILE` command), `filename` is the name of the data file, `vars` is a list of variable names and `options` is a list of desired options. The available units for writing data are 11-49. The available options on the `WRITE` command are similar to those for the `PRINT` and `READ` commands, that is, `BYVAR`, `CLOSE`, `DIF`, `FORMAT`, `NAMES`, `WIDE`, `BEG=`, `END=`. Additional options are:

- **APPEND** Append the data to the existing data file. If this option is not used then if the data file exists it will be replaced with the new data.

- **BINARY** Specified variables will be written into the specified file in Double Precision `BINARY`. If the `FILE` command is used to assign the `BINARY` file, follow the instructions for the `FILE` command in this chapter and be sure to include a decimal point (.) after the unit number.

- **DIF** Writes data to a DIF file. Refer to the section on **USING DIF FILES** in this chapter.

- **REWIND/NOREWIND** When multiple `WRITE` commands are used the data file will be overwritten by each `WRITE` command. That is, the `REWIND` option is the default. The `NOREWIND` option will write data sequentially to a file that has been used in a previous `WRITE` command.

NOTE: The default on the `WRITE` command is **NONAMES**. Therefore, if a heading of variable names is desired the `NAMES` option should be used.
An example of the use of the WRITE command to write data to an output file is:

```
read( theil.dat ) year consume income price
genr lncon = log(consume)
genr lninc = log(income)
genr lnpr = log(price)
write( mydata ) year lncon lninc lnpr
```

EXAMPLES

The next examples illustrate the use of options on READ and PRINT commands. The following is a listing of the Theil textile data set typed observation by observation. The variables are, from left to right, YEAR, CONSUME, INCOME and PRICE.

<table>
<thead>
<tr>
<th>Year</th>
<th>Consume</th>
<th>Income</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923</td>
<td>99.2</td>
<td>96.7</td>
<td>101.0</td>
</tr>
<tr>
<td>1924</td>
<td>99.0</td>
<td>98.1</td>
<td>100.1</td>
</tr>
<tr>
<td>1925</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1926</td>
<td>111.6</td>
<td>104.9</td>
<td>90.6</td>
</tr>
<tr>
<td>1927</td>
<td>122.2</td>
<td>104.9</td>
<td>86.5</td>
</tr>
<tr>
<td>1928</td>
<td>117.6</td>
<td>109.5</td>
<td>89.7</td>
</tr>
<tr>
<td>1929</td>
<td>121.1</td>
<td>110.8</td>
<td>90.6</td>
</tr>
<tr>
<td>1930</td>
<td>136.0</td>
<td>112.3</td>
<td>82.8</td>
</tr>
<tr>
<td>1931</td>
<td>154.2</td>
<td>109.3</td>
<td>70.1</td>
</tr>
<tr>
<td>1932</td>
<td>153.6</td>
<td>105.3</td>
<td>65.4</td>
</tr>
<tr>
<td>1933</td>
<td>158.5</td>
<td>101.7</td>
<td>61.3</td>
</tr>
<tr>
<td>1934</td>
<td>140.6</td>
<td>95.4</td>
<td>62.5</td>
</tr>
<tr>
<td>1935</td>
<td>136.2</td>
<td>96.4</td>
<td>63.6</td>
</tr>
<tr>
<td>1936</td>
<td>168.0</td>
<td>97.6</td>
<td>52.6</td>
</tr>
<tr>
<td>1937</td>
<td>154.3</td>
<td>102.4</td>
<td>59.7</td>
</tr>
<tr>
<td>1938</td>
<td>149.0</td>
<td>101.6</td>
<td>59.5</td>
</tr>
<tr>
<td>1939</td>
<td>165.5</td>
<td>103.8</td>
<td>61.3</td>
</tr>
</tbody>
</table>

Suppose that the file MYDATA contains the data set. To input this data, all that is needed is a SAMPLE command and a READ command:

```
SAMPLE   1 17
READ( MYDATA ) YEAR CONSUME INCOME PRICE
```

To print all or some of the variables the PRINT command is used. The sample size can be reset as many times as desired within a run. The sample size in effect will be the last one specified. This allows extensive manipulation of data. For example, in the following SHAZAM output the sample size is set twice, first to read the entire data file with the READ command, and then to print a subset of observations with the PRINT command.
An expanded form of the **SAMPLE** command can also be used to select portions from the larger sample. For example, to select observations 1 through 4 and 12 through 15, the following **SAMPLE** command would be used:

```
_SAMPLE 1 4 12 15
_PRINT YEAR CONSUME INCOME PRICE
YEAR CONSUME INCOME PRICE
 1923.000 99.20000 96.70000 101.0000
 1924.000 99.00000 98.10000 100.1000
 1925.000 100.0000 100.0000 100.0000
 1926.000 111.6000 104.9000 90.60000
 1927.000 122.2000 104.9000 86.50000
 1928.000 117.6000 109.5000 89.70000
 1929.000 121.1000 110.8000 90.60000
 1930.000 136.0000 112.3000 82.80000
 1931.000 154.2000 109.3000 70.10000
 1932.000 153.6000 105.3000 65.40000
 1933.000 158.5000 101.7000 61.30000
 1934.000 140.6000 95.40000 62.50000
 1935.000 136.2000 96.40000 63.60000
 1936.000 168.0000 97.60000 52.60000
 1937.000 154.3000 102.4000 59.70000
 1938.000 149.0000 101.6000 59.50000
 1939.000 165.5000 103.8000 61.30000
```

It is possible to read in data from more than one file in a single SHAZAM run. If, for example, the Theil textile data were divided into two portions, 1923-1930 and 1931-1939, and each portion were in a different file, SHAZAM could not only read in both data files,
but could also combine the two files so the variables were complete. Since the maximum number of observations of a variable is set by the first READ command in the absence of a SAMPLE command, it is necessary to first create the variable with the DIM command. The DIM command will reserve enough space for all the observations from both data files. In this example MYDATA1 is used for observations 1 to 8 and MYDATA2 is used for observations 9 to 17:

| DIM YEAR 17 CONSUME 17 INCOME 17 PRICE 17 |
| READ(MYDATA1) YEAR CONSUME INCOME PRICE / BEG=1 END=8 LIST |
| 4 VARIABLES AND 8 OBSERVATIONS STARTING AT OBS 1 |
| ...SAMPLE RANGE IS NOW SET TO: 1 8 |
| 1923.000 99.20000 96.70000 101.0000 |
| 1924.000 99.00000 98.10000 100.1000 |
| 1925.000 100.0000 100.0000 100.0000 |
| 1926.000 111.6000 104.9000 90.60000 |
| 1927.000 122.2000 104.9000 86.50000 |
| 1928.000 117.6000 109.5000 89.70000 |
| 1929.000 121.1000 110.8000 90.60000 |
| 1930.000 136.0000 112.3000 82.80000 |
| READ(MYDATA2) YEAR CONSUME INCOME PRICE / BEG=9 END=17 LIST |
| 4 VARIABLES AND 9 OBSERVATIONS STARTING AT OBS 9 |
| 1931.000 154.2000 109.3000 70.10000 |
| 1932.000 153.6000 105.3000 65.40000 |
| 1933.000 158.5000 101.7000 61.30000 |
| 1934.000 140.6000 95.40000 62.50000 |
| 1935.000 136.2000 96.40000 63.60000 |
| 1936.000 168.0000 97.60000 52.60000 |
| 1937.000 154.3000 102.4000 59.70000 |
| 1938.000 149.0000 101.6000 59.50000 |
| 1939.000 165.5000 103.8000 61.30000 |
| SAMPLE 1 17 |
| PRINT YEAR CONSUME INCOME PRICE |
| YEAR CONSUME INCOME PRICE |
| 1923.000 99.20000 96.70000 101.0000 |
| 1924.000 99.00000 98.10000 100.1000 |
| 1925.000 100.0000 100.0000 100.0000 |
| 1926.000 111.6000 104.9000 90.60000 |
| 1927.000 122.2000 104.9000 86.50000 |
| 1928.000 117.6000 109.5000 89.70000 |
| 1929.000 121.1000 110.8000 90.60000 |
| 1930.000 136.0000 112.3000 82.80000 |
| 1931.000 154.2000 109.3000 70.10000 |
| 1932.000 153.6000 105.3000 65.40000 |
| 1933.000 158.5000 101.7000 61.30000 |
| 1934.000 140.6000 95.40000 62.50000 |
| 1935.000 136.2000 96.40000 63.60000 |
| 1936.000 168.0000 97.60000 52.60000 |
| 1937.000 154.3000 102.4000 59.70000 |
| 1938.000 149.0000 101.6000 59.50000 |
| 1939.000 165.5000 103.8000 61.30000 |

In the above example, the DIM command set the length of all four variables to 17. (For further details on the DIM command see the chapter MISCELLANEOUS COMMANDS AND INFORMATION.) Then, using the BEG= and END= options, the variables YEAR,
CONSUME, INCOME and PRICE were read in from two data files, observations 1 to 8 are read in from MYDATA1 and observations 9 to 17 are read in from MYDATA2.

READ command with BYVAR option

When the data is typed variable by variable the BYVAR option is needed on the READ command. The following is a listing of a file which contains the same data as that used above, but it is typed variable by variable rather than observation by observation:

```
1923 1924 1925 1926 1927 1928 1929 1930
1931 1932 1933 1934 1935 1936 1937 1938 1939
  99.2 99.0 100.0 111.6 122.2 117.6 121.1 136.0
154.2 153.6 158.5 140.6 136.2 168.0 154.3 149.0 165.5
  96.7  98.1 100.0 104.9 104.9 109.5 110.8 112.3
109.3 105.3 101.7  95.4  96.4  97.6 102.4 101.6 103.8
101.0 100.1 100.0  90.6  86.5  89.7  90.6  82.8
  70.1  65.4  61.3  62.5  63.6  52.6  59.7  59.5  61.3
```

Each variable may extend over more than one line. However, *new variables must start on a new line*. With the BYVAR option the SAMPLE command is especially important. SHAZAM needs the sample size in order to know when to stop reading observations into the first variable listed on the READ command and start reading them into the second, etc.

To input the above data a SAMPLE command and a READ command with the BYVAR option are needed:

```
sample 1 17
read (mydata) year consume income price / byvar
```

It is also possible to use the BYVAR option on the PRINT command. The variables will be printed horizontally by variable rather than in columns:

```
| PRINT YEAR CONSUME / BYVAR |
| YEAR   | 1923.0 | 1924.0 | 1925.0 | 1926.0 | 1927.0 | 1928.0 | 1929.0 | 1930.0 |
| YEAR   | 1931.0 | 1932.0 | 1933.0 | 1934.0 | 1935.0 | 1936.0 | 1937.0 | 1938.0 |
| YEAR   | 1939.0 |
| CONSUME| 99.20  | 99.00  | 100.00 | 111.60 | 122.20 | 117.60 | 121.10 | 136.00 |
| CONSUME| 154.20 | 153.60 | 158.50 | 140.60 | 136.20 | 168.00 | 154.30 | 149.00 |
| CONSUME| 165.50 |        |
```
READ command with ** **ROWS= **and** **COLS=** **option**

It is often useful to read data as a matrix. To read in a matrix, the **ROWS=** and **COLS=** options are needed on the **READ** command. If the original Theil textile data were all to be placed in a single matrix named **W**, the appropriate **READ** command would be:

```plaintext
read(mydata) w / rows=17 cols=4 beg=1
```

To print **W** the **PRINT** command is used:

```
PRINT W
17 BY 4 MATRIX
1923.000 99.20000 96.70000 101.0000
1924.000 99.00000 98.10000 100.1000
1925.000 100.0000 100.0000 100.0000
1926.000 111.6000 104.9000  90.60000
1927.000 122.2000 104.9000  86.50000
1928.000 117.6000 109.5000  89.70000
1929.000 121.1000 110.8000  90.60000
1930.000 136.0000 112.3000  82.80000
1931.000 154.2000 109.3000  70.10000
1932.000 153.6000 105.3000  65.40000
1933.000 158.5000 101.7000  61.30000
1934.000 140.6000  95.40000  62.50000
1935.000 136.2000  96.40000  63.60000
1936.000 168.0000  97.60000  52.60000
1937.000 154.3000 102.4000  59.70000
1938.000 149.0000 101.6000  59.50000
1939.000 165.5000 103.8000  61.30000
```

It is also possible to print only one column of the matrix using the **PRINT** command with the column number of the matrix specified after a colon (:) as follows:

```
PRINT W:4
101.0000 100.1000 100.0000 90.6000 86.50000
89.70000 90.60000 82.80000 70.10000 65.40000
61.30000 62.50000 63.60000 52.60000 59.70000
59.50000 61.30000
```

The above **PRINT** command prints the data in the fourth column of the matrix **W**.

THE FORMAT AND NAMEFMT COMMANDS

The **FORMAT** command can precede a **READ**, **WRITE** or **PRINT** command that specifies the **FORMAT** option. For a **READ / FORMAT** command, the data file contains a sequence of formatted records. An individual record contains a list of variables that can contain
either character or numeric data. Each variable must be entered in a field with a fixed column width. That is, variable field widths are not allowed.

The **FORMAT** command gives the column positions of the data. The general format is:

```
FORMAT(list)
```

where *list* contains edit descriptors of the form:

- **nX** advances the column position by n spaces. The maximum limit is 127X. To get more spaces use, for example, 127X,127X.

- **nFw.d** the field is w characters wide and contains a number such that d digits occur after the decimal point. The field is repeated n times.

 On a **READ** command fields that are all blanks are interpreted as zero values. Also, an explicit decimal point in the input field will override any specification of the decimal-point position given in the **FORMAT** command.

- **Aw** the field is w characters wide and contains a SHAZAM character variable. The maximum limit is A8. An example is given below.

- **Tn** Tab over to column n. That is, read from column n or write to column n.

- **/** skip to the next line.

The command line of a **FORMAT** statement must not exceed 248 characters. (Do not confuse this with the data file record length).

The **NAMEFMT** command can precede a **PRINT / FORMAT** command or a **WRITE / NAMES FORMAT** command. This command controls the layout of the header line of variable names. The general format is:

```
NAMEFMT(list)
```

where *list* contains edit descriptors for the variable names.
Examples

As an example, the Theil textile data set can be loaded using a FORMAT command. The appropriate commands are a SAMPLE command, a FORMAT command and a READ command with the FORMAT option:

```
sample 1 17
format(f4.0,3f6.0)
read(mydata) year consume income price / format
```

The above FORMAT specifies to read the first variable in the first 4 columns, then read 3 variables of 6 columns each.

The next example uses a data set with the average stock prices in 1999 for a sample of six Toronto Stock Exchange companies. The first variable in the data set is a character variable containing the trading symbol and the second variable contains the average stock prices. In the SHAZAM commands below, the FORMAT command that precedes the READ command specifies an edit descriptor for each variable in the data set. The first edit descriptor A8 specifies to read a character variable with a length of 8 characters. The second edit descriptor F8.2 specifies to read numeric data with a field width of 8 characters and 2 digits follow the decimal point.

```
sample 1 6
format(a8,f8.2)
read symbol price / format
aec        41.66
cxy        23.27
dtc        13.48
nor        18.52
fsh        61.32
ry         69.05
format(1x,a8,f8.2)
namefmt(1x,a8,3x,a8)
print symbol price / format
```

The above command file also shows the use of a FORMAT and NAMEFMT command to control the output from a PRINT command that specifies the FORMAT option. The FORMAT command starts with the edit descriptor 1X. For a PRINT command this may be required since the first column may be reserved as a control character. The output from the above command file is shown below.
The next example works with a data set on the unemployment and vacancy rates of nine Canadian provinces for January 1976 as provided by Statistics Canada. Data on the 10th province, Prince Edward Island, was not available. The province name spans the first 16 characters of the data set. A SHAZAM character variable cannot exceed 8 characters. For longer names, two or more character variables can be created. In this example, the province name is assigned to the variable names `PROV1` and `PROV2`. The `FORMAT` command uses the edit descriptor `2A8` to load these character variables. The unemployment and vacancy rates are loaded in the variable names `UR` and `VR`, respectively. The `FORMAT` command specifies that each of these variables contains numeric data with a field width of 5 characters.

```
sample 1 9
format(2a8,2f5.1)
read prov1 prov2 ur vr / format
Newfoundland 14.9  4.0
Nova Scotia    9.1   5.0
New Brunswick 12.2  7.0
Quebec         9.1   6.0
Ontario        7.1   5.0
Manitoba       6.7   8.0
Saskatchewan   4.8   8.0
Alberta        5.3  11.0
British Columbia 10.0  4.0
format(1x,2a8,2f5.1)
print prov1 prov2 ur vr / format nonames
```

The SHAZAM output from this example is:
DATA INPUT AND OUTPUT

|_FORMAT(1X,2A8,2F5.1)
|_PRINT PROV1 PROV2 UR VR / FORMAT NONAMES
Newfoundland 14.9 4.0
Nova Scotia 9.1 5.0
New Brunswick 12.2 7.0
Quebec 9.1 6.0
Ontario 7.1 5.0
Manitoba 6.7 8.0
Saskatchewan 4.8 8.0
Alberta 5.3 11.0
British Columbia 10.0 4.0

USING DIF FILES

The DIF (Data Interchange Format) file format provides a standard for transferring files between programs. A DIF file typically contains information about the variable names, number of variables and number of observations. A spreadsheet file can be converted to DIF format by opening the spreadsheet and selecting the DIF file format from the Save As dialog box in the File menu. The **READ** command in SHAZAM can load DIF files.

When data is prepared in a spreadsheet program to read into SHAZAM it is best to set up the data as a rectangular matrix where each column of the matrix corresponds to a SHAZAM variable and each row of the matrix corresponds to an observation in SHAZAM. Hence, if your data contained 11 variables and 37 observations your spreadsheet program would show 11 columns and 37 rows. If the first row of the spreadsheet contains the names of the variables then the spreadsheet would have 11 columns and 38 rows. When variable names are included you should be careful that they correspond to SHAZAM variable name rules or SHAZAM may not be able to access the data properly.

Assume you have created a DIF file from another program (or from SHAZAM using the **WRITE** command with the **DIF** option). Suppose the file is called **MYDATA.DIF** and no names have been included in the first row of the spreadsheet and there are 17 rows and 3 columns. To assign the variable names **YEAR**, **CONSUME** and **INCOME**, the appropriate **READ** command is:

```plaintext
read(mydata.dif) year consume income / dif
```

If variable names are included in the DIF file, then you must not include them on the **READ** command. The data set is loaded and variable names are assigned with the command:

```plaintext
read(mydata.dif) / dif
```
The above two examples assume that the data file **MYDATA.DIF** is located in the same directory/folder as the SHAZAM command file. If the data file is located in a separate directory/folder called **ECONDAT** then, for the Microsoft Windows version of SHAZAM, the above **READ** commands would be:

```
read (c:\econdat\mydata.dif) year consume income / dif
or
read (c:\econdat\mydata.dif) / dif
```

It is assumed that the hard disk on the personal computer is called "C". If the hard disk is called something other than "C" then replace it with the appropriate name.

It is extremely important to remember that you must specify exactly where the data file is located in your **READ** command. Otherwise, SHAZAM will not know where to look for the file and there will be an error.

The number of observations for each variable must be identical in the DIF file. This means that you cannot have any missing observations for any of the variables. If missing observations exist in the data file then you must enter a numeric missing value code. The SHAZAM default missing data code is \(-99999\).

In some cases you may find that your data file has to be cleaned up a bit in the spreadsheet program before a proper DIF file can be produced. For example, you may find that your spreadsheet program has produced a large number of blank rows and columns. It may be necessary to delete these blank rows and columns first. It is required that an equal number of rows are present for each column in the spreadsheet. Some spreadsheet programs actually transpose the data matrix when writing a DIF file. If this happens it may be necessary to perform some data manipulations using SHAZAM **MATRIX** commands to transpose the data into the proper form.

SHAZAM can also create a DIF file for use in another program. For example, if your SHAZAM run currently has the variables **YEAR**, **PRICE** and **INCOME** and you wish to create a DIF file with these three variables you would need the following commands:

```
write (newfile.dif) year price income / dif names
```

If you did not wish to include the variable names in the DIF file then the **NAMES** option would not be used. In order to learn how to use DIF files, it is often easier to first **WRITE** a DIF file in SHAZAM and then examine it and **READ** it back into SHAZAM. If you are successful in this exercise you will understand the DIF file process.
4. DESCRIPTIVE STATISTICS

"Jupiter’s moons are invisible to the naked eye and therefore can have no influence on the earth, and therefore would be useless, and therefore do not exist."

Francisco Sizzi
Professor of Astronomy, 1610

The STAT command computes descriptive statistics.

Mean, Variance and Other Statistics

For a variable X with N observations denoted by X_t for $t = 1, \ldots, N$ the statistics listed by the STAT command are calculated as:

Mean
$$\overline{X} = \frac{1}{N} \sum_{t=1}^{N} X_t$$

Variance
$$\hat{\sigma}_X^2 = \frac{1}{N-1} \sum_{t=1}^{N} (X_t - \overline{X})^2 = \frac{1}{N-1} \left[\sum_{t=1}^{N} X_t^2 - N \overline{X}^2 \right]$$

Standard deviation
$$\hat{\sigma}_X = \sqrt{\hat{\sigma}_X^2}$$

Minimum
$$\text{Min} = \text{the smallest value of } X_t$$

Maximum
$$\text{Max} = \text{the largest value of } X_t$$

When the **WIDE** option is specified the output also reports:

Coefficient of variation
$$\frac{\hat{\sigma}_X}{\overline{X}}$$

Constant digits statistic
$$= \left\{ \begin{array}{ll} -\log_{10} \left(\frac{R}{|\text{Min}|} \right) & \text{if } R < |\text{Min}| \text{ and } \text{Min} \neq \text{Max} \\ 0 & \text{otherwise} \end{array} \right.$$

where $R=(\text{Max}-\text{Min})$ is the sample range. The fraction $R/|\text{Min}|$ gives the relative change from the smallest to the largest value. For discussion see Simon and Lesage [1989].
When the **PMEDIAN** option is specified the output reports the median, the mode and quartiles. Let \(X_{(1)}, X_{(2)}, \ldots, X_{(N)}\) be the observations that are ordered from smallest to largest. The median is:

\[
\begin{cases}
 X_{\left(\frac{N+1}{2}\right)} & \text{if } N \text{ is odd} \\
 \text{the average of } X_{\left(\frac{N}{2}\right)} \text{ and } X_{\left(\frac{N+2}{2}\right)} & \text{if } N \text{ is even}
\end{cases}
\]

The mode is the most frequently occurring value in the set of observations. The quartiles are obtained as:

- **first quartile (lower 25%)** \(X_{\left(\frac{N+1}{4}\right)}\)
- **second quartile** \(X_{\left(\frac{N}{2}\right)}\) \(=\text{median}\)
- **third quartile (upper 25%)** \(X_{\left(\frac{3(N+1)}{4}\right)}\)
- **interquartile range** \(\text{difference between the third and first quartiles (a measure of dispersion)}\).

Interpolation is used to compute the quartiles when \((N+1)/4\) is not an integer. Discussion and examples are given in Newbold [1995, Chapter 2].

The **PFREQ** option reports frequencies, relative frequencies and cumulative relative frequencies. For the ordered data the frequency \(f_t\) is the number of occurrences of \(X_t\). The relative frequency is \(f_t/N\) and the cumulative relative frequency is \((f_1+\ldots+f_t)/N\). Note that the frequency distribution for grouped data is obtained with a histogram display that is available with the **HISTO** option on the **GRAPH** command (see the chapter **PLOTS AND GRAPHS**).

Covariance and Correlation

Statistics involving relationships between variables are also produced with the **STAT** command. Consider \(K\) variables such that the \(k^{th}\) variable has observations \(X_{kt}\) for \(t = 1, \ldots, N\) with mean \(\bar{X}_k\) and standard deviation \(\hat{\sigma}_k\) for \(k = 1, \ldots, K\). The cross-products (printed with the **PCP** option) are:

\[
\sum_{t=1}^{N} X_{it}X_{jt} \quad \text{for } i,j = 1, \ldots, K
\]

The cross-products of deviations about the mean (printed with the **PCPDEV** option) are:
The covariances (printed with the `PCOV` option and saved with the `COV=` option) are:

$$\text{Cov} (X_i, X_j) = \frac{1}{N-1} \sum_{t=1}^{N} (X_{it} - \bar{X}_i)(X_{jt} - \bar{X}_j) = \frac{1}{N-1} \left[\sum_{t=1}^{N} X_{it}X_{jt} - N\bar{X}_i\bar{X}_j \right]$$

The correlations (printed with the `PCOR` option and saved with the `COR=` option) are:

$$\text{Cor} (X_i, X_j) = \text{Cov} (X_i, X_j) / \hat{\sigma}_X \hat{\sigma}_X$$

The correlation coefficients may be seriously affected by extreme outliers. An alternative measure of correlation that is not as sensitive to extreme values is based on ranks. Let S_{it} be the rank of X_{it} where the ranking is in ascending order of values. Spearman’s rank correlation coefficients are calculated as:

$$r_s(X_i, X_j) = 1 - \frac{6}{N(N^2-1)} \sum_{t=1}^{N} (S_{it} - S_{jt})^2$$

Testing for Equality of Mean and Variance

The `ANOVA` option constructs an analysis of variance table that gives a framework for testing for equality of population means (see, for example, Newbold [1995, pp. 598-605]). An assumption is that the random samples are independent. Consider K variables such that the k^{th} variable has observations X_{kt} for $t = 1, \ldots, n_k$. That is, the design allows for unequal sample sizes. Define:

$$N = \sum_{k=1}^{K} n_k, \quad \bar{X}_k = \frac{1}{n_k} \sum_{t=1}^{n_k} X_{kt} \quad \text{and} \quad \bar{X} = \frac{1}{N} \sum_{k=1}^{K} n_k \bar{X}_k$$

The analysis of variance (ANOVA) table is constructed as:
The null hypothesis of equal means is rejected if the F statistic exceeds the critical value from an F distribution with (K – 1, N–K) degrees of freedom.

For a sample with equal observations, a two-way analysis of variance can be constructed using the method discussed in Newbold [1995, pp. 618-9]. Denote \(H = n_k \) (\(k = 1, \ldots, K \)) and consider \(X_{kt} \) as the observation for group \(k \) and block \(t \). Define the sample mean for block \(t \) (\(t = 1, \ldots, H \)) by:

\[
\bar{X}_{*t} = \frac{1}{K} \sum_{k=1}^{K} X_{kt}
\]

The calculations for the two-way analysis of variance are:

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETWEEN</td>
<td>SSG = (\sum_{k=1}^{K} n_k (\bar{X}_k - \bar{X})^2)</td>
<td>(K - 1)</td>
<td>(\frac{SSG}{K - 1})</td>
<td>(\frac{SSG}{K - 1})</td>
</tr>
<tr>
<td>WITHIN</td>
<td>SSW = (\sum_{k=1}^{K} \sum_{t=1}^{H} (X_{kt} - \bar{X}_k)^2)</td>
<td>(N - K)</td>
<td>(\frac{SSW}{N - K})</td>
<td>(\frac{SSW}{N - K})</td>
</tr>
<tr>
<td>TOTAL</td>
<td>SST = (\sum_{k=1}^{K} \sum_{t=1}^{H} (X_{kt} - \bar{X})^2)</td>
<td>(N - 1)</td>
<td>(\frac{SST}{N - 1})</td>
<td>(\frac{SST}{N - 1})</td>
</tr>
</tbody>
</table>
The F statistics give tests for the null hypothesis that the K population group means are the same and the null hypothesis that the H population block means are the same.

The **BARTLETT** option computes Bartlett’s statistic for testing for equality of population variance (see, for example, Judge, Griffiths, Hill, Lütkepohl and Lee [1985, p. 448]). The sample variances are:

\[
\hat{\sigma}^2_k = \frac{1}{(n_k - 1)} \sum_{t=1}^{n_k} (x_{kt} - \bar{x}_k)^2 \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{(N - K)} \sum_{k=1}^{K} (n_k - 1) \hat{\sigma}^2_k
\]

A statistic for testing for equality of variance is:

\[
u = \sum_{k=1}^{K} \left(\frac{\hat{\sigma}^2_k}{\hat{\sigma}^2} \right)^{n_k / 2}
\]

Bartlett’s test statistic is based on a modification of \(-2 \ln(u)\) and is constructed as:

\[
M = \frac{(N - K) \ln \hat{\sigma}^2 - \sum_{k=1}^{K} (n_k - 1) \ln \hat{\sigma}^2_k}{1 + \frac{1}{3(K-1)} \left[\sum_{k=1}^{K} \frac{1}{(n_k - 1)} - \frac{1}{(N-K)} \right]}
\]

There is evidence to reject the null hypothesis of equal variances if the test statistic M exceeds the critical value from a \(\chi^2\) distribution with (K–1) degrees of freedom. This is an approximate test. The derivation of exact critical values for the case of equal sample sizes is given in Dyer and Keating [1980].

When only two variables are specified on the **STAT** command the **ANOVA** option lists some additional test statistics. Assume two independent random samples. To test for equality of population means a test statistic (see Newbold [1995, pp. 355-6]) is:

\[
\text{APPROXIMATE T-TEST OF EQUAL MEANS} \quad t_A = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\hat{\sigma}^2_1 / n_1 + \hat{\sigma}^2_2 / n_2}}
\]

If \(|t_A|\) exceeds the critical value from a standard normal distribution then there is evidence for different population means. Newbold [1995, p. 356] suggests that this test is a good approximation for sample sizes of at least 30.

With the assumption of equal population variances, a test statistic for equality of population means (see Newbold [1995, pp. 357-8]) is:
EQUAL VARIANCE T-TEST OF EQUAL MEANS

\[t_B = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\hat{\sigma}^2}{n_1} + \frac{\hat{\sigma}^2}{n_2}} / (n_1n_2)} \]

The null hypothesis of equal means is rejected if \(|t_B|\) exceeds the critical value from a t-distribution with \((n_1 + n_2 - 2)\) degrees of freedom. Note that when \(n_1 = n_2\) the test statistics \(t_A\) and \(t_B\) are identical. Also, it can be shown that \(t_B^2 = F\) where \(F\) is the F statistic from the one-way ANOVA table.

In the case where the random sample can be viewed as \(H\) matched pairs of observations a test statistic for equal population means (see Newbold [1995, p. 353]) is:

\[t_c = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{1}{(H - 1)H} \sum_{t=1}^{H} (X_{1t} - X_{2t} - (\bar{X}_1 - \bar{X}_2))^2}} \]

It can be shown that \(t_c^2 = F\) where \(F\) is the F statistic from the two-way ANOVA table.

A statistic for testing for equality of variances from two independent normal populations (see Newbold [1995, p. 367]) is:

\[\text{F-TEST OF EQUAL VARIANCES} \begin{cases} \hat{\sigma}_1^2 / \hat{\sigma}_2^2 & \text{if } \hat{\sigma}_1^2 > \hat{\sigma}_2^2 \quad (\text{df1} = n_1 - 1; \text{df2} = n_2 - 1) \\ \hat{\sigma}_2^2 / \hat{\sigma}_1^2 & \text{if } \hat{\sigma}_2^2 > \hat{\sigma}_1^2 \quad (\text{df1} = n_2 - 1; \text{df2} = n_1 - 1) \end{cases} \]

The null hypothesis of equal variances is rejected in favour of the alternative hypothesis of larger variance for the numerator population if the statistic exceeds the critical value from an F distribution with numerator degrees of freedom \(\text{df1}\) and denominator degrees of freedom \(\text{df2}\).

STAT COMMAND OPTIONS

In general, the format of the STAT command is:

\[\text{STAT vars / options} \]

where \(\text{vars}\) is a list of variable names and \(\text{options}\) is a list of desired options. The available options on the STAT command are:
ALL Statistics are computed for ALL the variables in the data. Therefore, no variable names need be specified.

ANOVA Prints an ANalysis Of VAriance table and an F-value that tests the null hypothesis that the means of all the variables listed on the given STAT command are the same. For equal sample sizes a two-way analysis of variance is constructed. When two variables are specified, additional test statistics for equal means and variances are reported. An ANOVA example is given later in this chapter.

BARTLETT Computes BARTLETT’s homogeneity of variance test statistic to test the hypothesis that the variances of all the variables listed are equal. An example of this option is given later in this chapter.

DN Uses N (number of observations) as a divisor rather than N–1 when computing variances and covariances.

MATRIX Any MATRIX or matrices contained in the list vars will be treated as a single variable if this option is used. If this option is not specified SHAZAM will treat each column of the matrix as a separate variable.

MAX Prints all the output of the PCOR, PCOV, PCP, PCPDEV and PRANKCOR options.

PCOR Prints a CORrelation matrix of the variables listed.

PCOV Prints a COVariance matrix of the variables listed.

PCP Prints a CrossProduct matrix of the variables listed.

PCPDEV Prints a CrossProduct matrix of the variables listed in DEViations from the means.

PFREQ Prints a table of FREQuencies of occurrence for each observed value in the data. Also prints the median, the mode and quartiles. This option is not recommended for large sample sizes with many different possible values since pages and pages of output would result.

PMEDIAN Prints the MEDIAN, mode and quartiles for each variable. This option could be time-consuming when the sample size is large.
PRANKCOR Prints a matrix of Spearman's RANK CORrelation coefficients.

REPLICATE Used with WEIGHT= when the weights indicate a sample replication factor. The REPLICATE option is not available with PFREQ, PMEDIAN, MEDIANS= or MODES=.

SAMEOBS Restrict the sample to ensure that all observations for all variables are non-missing. This option reports descriptive statistics for the sample used in an OLS or other estimation command. The SET SKIPMISS command must be in effect.

SAMPSIZE Calculates the sample size required to obtain a 95% confidence interval with width 2e where e is a margin of error with values ranging from 0.01 to 0.10. The population size can be specified with the NPOP= option. The method is described in Lohr [1999, p. 40].

WIDE Requires 120 columns of output. When this option is used the coefficient of variation and the constant digits statistic will be printed in addition to the regular descriptive statistics.

BEG=, END= Specifies the BEGinning and END observations to be used in the STAT command.

COR= Stores the CORrelation matrix in the variable specified.

COV= Stores the COVariance matrix in the variable specified.

CP= Stores the CrossProduct matrix in the variable specified.

CPDEV= Stores the CrossProduct matrix in deviations from the mean in the variable specified.

MAXIM= Stores the MAXIMums as a vector in the variable specified.

MEAN= Stores the MEANs as a vector in the variable specified.

MEDIANS= Stores the MEDIANS as a vector in the variable specified.

MINIM= Stores the MINIMums as a vector in the variable specified.
MODES= Stores the MODES as a vector in the variable specified. If there are multiple modes then the largest mode is saved. If there are no repeat values then the value saved is the maximum value.

NPOP= Specifies the population size to use with the SAMPSIZE option.

RANKCOR= Stores the Spearman’s RANK CORrelation matrix in the variable specified (see the PRANKCOR option above).

STDEV= Stores the STandard DEViations as a vector in the variable specified.

STEMPLOT= Specifies the number of digits in the stem (usually 1 or 2) for a stem-and-leaf display of the data. The method is described in Newbold, Carlson and Thorne [2003, pp. 19-22].

SUMS= Stores the sum of each variable as a vector in the variable specified.

VAR= Stores the VARIances as a vector in the variable specified. Note that when the DN option is used the divisor is N instead of N–1.

WEIGHT= Specifies a variable to be used as a WEIGHT if weighted descriptive statistics are desired. Consider K variables such that the kth variable has observations X_{kt} for $t = 1, \ldots, N$ and $k = 1, \ldots, K$. Let W_t be the weights. The weighted statistics are:

\[
\text{Mean} \quad \bar{X}_k^w = \frac{1}{W^*} \sum_{t=1}^{N} W_t X_{kt} \quad \text{where} \quad W^* = \sum_{t=1}^{N} W_t
\]

\[
\text{Variance} \quad \hat{\sigma}_{x_k^w}^2 = \frac{c}{W^*} \left[\sum_{t=1}^{N} W_t X_{kt}^2 - W^* \cdot (\bar{X}_k^w)^2 \right]
\]

where $c = N/(N–1)$. When the DN option is used then $c = 1$. When the REPLICATE option is used then $c = W^*/(W^*–1)$. The REPLICATE option is not effective when DN is specified. The weighted covariances and correlations are computed as:

\[
\text{Cov} \left(X_i, X_j\right)_w = \frac{c}{W^*} \left[\sum_{t=1}^{N} W_t X_{it} X_{jt} - W^* \cdot \bar{X}_i^w \bar{X}_j^w \right]
\]
Cor \((X_i, X_j)_w \) = Cov \((X_i, X_j)_w \) / \(\hat{\sigma}_{x_iw} \hat{\sigma}_{x_jw} \)

It is important to note that options beginning with P will merely print results on the output file. Options ending in an equal sign (=) are used to store the matrix or vector in the variable specified or to specify input requirements.

EXAMPLES

The examples below use Theil’s textile data to illustrate some options on the STAT command. The output for the STAT command with the PCOR, PCOV and WIDE options is:

```
<table>
<thead>
<tr>
<th>STAT CONSUME INCOME PRICE / PCOR PCOV WIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>CONSUME</td>
</tr>
<tr>
<td>INCOME</td>
</tr>
<tr>
<td>PRICE</td>
</tr>
</tbody>
</table>

COEF.OF.VARIATION CONSTANT-DIGITS
.17529 .15679
.51475E-01 .75166
.22102 .36140E-01

CORRELATION MATRIX OF VARIABLES - 17 OBSERVATIONS

<table>
<thead>
<tr>
<th>CONSUME</th>
<th>INCOME</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>.61769E-01</td>
<td>- .94664</td>
</tr>
</tbody>
</table>

COVARIANCE MATRIX OF VARIABLES - 17 OBSERVATIONS

<table>
<thead>
<tr>
<th>CONSUME</th>
<th>INCOME</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>555.89</td>
<td>28.100</td>
<td>-376.44</td>
</tr>
</tbody>
</table>

The next example shows the use of the STDEV= and COR= options. The standard deviations of the variables CONSUME, INCOME and PRICE are stored in a variable called SD. The correlation matrix is stored in a variable called CMATRIX. These variables are then available for future computations.

```
<table>
<thead>
<tr>
<th>STAT CONSUME INCOME PRICE / STDEV=SD COR=CMATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>CONSUME</td>
</tr>
<tr>
<td>INCOME</td>
</tr>
<tr>
<td>PRICE</td>
</tr>
</tbody>
</table>
```
The next example uses the fuel consumption data from Newbold [1995, p. 614]. The data set contains observations on fuel consumption for three types of automobiles driven by drivers in six age classes. The output below shows the use of the ANOVA and BARTLETT options on the STAT command. Note that the LIST option on the READ command is used to obtain a listing of the fuel consumption data.

| SAMPLE 1 6 |
| READ A B C / LIST |
| 3 VARIABLES AND 6 OBSERVATIONS STARTING AT OBS 1 |
| A              B              C |
| 25.10000       23.90000       26.00000 |
| 24.70000       23.70000       25.40000 |
| 26.00000       24.40000       25.80000 |
| 24.30000       23.30000       24.40000 |
| 23.90000       23.60000       24.20000 |
| 24.20000       24.50000       25.40000 |

| STAT A B C / ANOVA BARTLETT |
| NAME        N    MEAN        ST. DEV      VARIANCE     MINIMUM      MAXIMUM |
| A             6   24.700     0.76158     0.58000       23.900       26.000 |
| B             6   23.900     0.46904     0.22000       23.300       24.500 |
| C             6   25.200     0.73756     0.54400       24.200       26.000 |

ANALYSIS OF VARIANCE - OVERALL MEAN= 24.600
SS         DF             MS               F    P-VALUE
BETWEEN    5.1600          2.        2.5800          5.7589     0.0139 |
WITHIN     6.7200         15.       0.44800 |
TOTAL      11.880         17.       0.69882 |

TWO-WAY ANALYSIS OF VARIANCE - OVERALL MEAN= 24.600
SS        DF             MS               F    P-VALUE
GROUPS     5.1600          2.        2.5800          14.828     0.0010 |
BLOCKS     4.9800          5.        0.99600          5.7241     0.0095 |
ERROR      1.7400         10.       0.17400 |
TOTAL      11.880         17.       0.69882 |

BARTLETTS HOMOGENEITY OF VARIANCE TEST = 1.1883
APPROXIMATELY CHI-SQUARE WITH 2 DEGREES OF FREEDOM

The two-way analysis of variance table can be compared with Newbold [1995, Table 15.9, p. 621]. The above results show that Bartlett's test statistic is 1.1883. The 5% critical value from a chi-square distribution with 2 degrees of freedom is 5.99. The test statistic is less than the critical value and so the null hypothesis of equal population variances is not rejected.
The next example uses monthly seasonally adjusted data on the unemployment rate for Canada from 1980 to 1998. The SHAZAM output below reports tests for equal means and equal variances for the two sample periods January 1980 to December 1989 and January 1990 to December 1998.

```
| SAMPLE 1 120
| READ (URATE.DAT) DATE80 UR80
UNIT 88 IS NOW ASSIGNED TO: URATE.DAT
 2 VARIABLES AND 120 OBSERVATIONS STARTING AT OBS 1
| SAMPLE 1 108
| READ (URATE.DAT) DATE90 UR90 / NOREWIND
 2 VARIABLES AND 108 OBSERVATIONS STARTING AT OBS 1
| SAMPLE 1 120
| STAT UR80 UR90 / ANOVA
+-----------------+-------+-----------------+-----------------+------------------+
| NAME | N | MEAN | ST. DEV | VARIANCE | | |
| | | MINIMUM | MAXIMUM | |
| UR80 | 120 | 9.3533 | 1.7671 | 3.1225 | 6.9000 | 12.900 |
+-----------------+-------+-----------------+-----------------+------------------+
| DIFFERENCE BETWEEN TWO SAMPLES TESTS: | STATISTIC | D.F. | P-VALUE |
| APPROXIMATE T-TEST OF EQUAL MEANS: | -2.2852 | 206 | 0.0233 |
| EQUAL VARIANCE T-TEST OF EQUAL MEANS: | -2.2365 | 226 | 0.0263 |
| F-TEST OF EQUAL VARIANCES: | 2.3729 | 119 | 0.0000 |
+-----------------+-------+-----------------+-----------------+------------------+
| ANALYSIS OF VARIANCE - OVERALL MEAN= | 9.5649 | | | | |
| SS | DF | MS | F | P-VALUE |
| BETWEEN | 11.341 | 1. | 11.341 | 5.0021 | 0.0263 |
| WITHIN | 512.38 | 226. | 2.2672 | | |
| TOTAL | 523.72 | 227. | 2.3071 | | |
+-----------------+-------+-----------------+-----------------+------------------+
```

In the next example the fuel consumption data is read in as a matrix $M$. If the MATRIX option is used on the STAT command the matrix variable will be treated as a single variable as shown in the following output.

```
| SAMPLE 1 6
| READ M / ROWS=6 COLS=3
 6 ROWS AND 3 COLUMNS, BEGINNING AT ROW 1
| STAT M / MATRIX
+-----------------+-------+-----------------+-----------------+------------------+
| NAME | N | MEAN | ST. DEV | VARIANCE | | |
| | | MINIMUM | MAXIMUM | |
| M | 18 | 24.600 | 0.76080 | 0.57882 | 23.300 | 26.000 |
+-----------------+-------+-----------------+-----------------+------------------+
```

However, if the MATRIX option is not used, each column of the matrix specified will be treated as a single variable as shown in the output:
### DESCRIPTIVE STATISTICS

<table>
<thead>
<tr>
<th>Stat M</th>
<th>N</th>
<th>Mean</th>
<th>St. Dev</th>
<th>Variance</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>6</td>
<td>24.70</td>
<td>0.76158</td>
<td>0.58000</td>
<td>23.900</td>
<td>26.000</td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>23.90</td>
<td>0.46904</td>
<td>0.22000</td>
<td>23.300</td>
<td>24.500</td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>25.20</td>
<td>0.73756</td>
<td>0.54400</td>
<td>24.200</td>
<td>26.000</td>
</tr>
</tbody>
</table>

...Note...treating columns of M as vectors.
5. PLOTS AND GRAPHS

“When the President does it, that means it is not illegal.”
Richard Nixon
Former U.S. President, 1977

The **GRAPH** command provides an interface to the GNUPLOT program (Version 3.7 or later) for preparing graphs and histograms. GNUPLOT is a freely distributable command-driven plotting program developed by Thomas Williams, Colin Kelley and others. Information about gnuplot is available at the SHAZAM web site on the internet. When the **GRAPH** command is used the graph is displayed in a separate window. The **PLOT** command can be used to obtain plots that are printed with plain text characters on the SHAZAM output.

**THE GRAPH COMMAND**

In general, the format of the **GRAPH** command is:

```
GRAPH depvars indep / options
```

where **depvars** is one or more dependent variables to be plotted against a single independent variable, **indep**, and **options** is a list of desired options. Available options are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEND</td>
<td>Specifies that the gnuplot command file is to be appended to gnuplot command files created with previous commands in the SHAZAM program.</td>
</tr>
<tr>
<td>AXIS/NOAXIS</td>
<td>By default, an x-axis and y-axis is drawn at x=0 and y=0. Use <strong>NOAXIS</strong> to omit the axes.</td>
</tr>
<tr>
<td>AXISFMT</td>
<td>Set the x-axis labels with the date format specified on the previous <strong>AXISFMT</strong> command. Description of the <strong>AXISFMT</strong> command is available later in this chapter. When this option is used the <strong>TIMEFMT</strong> option must also be specified.</td>
</tr>
<tr>
<td>HISTO</td>
<td>Plots a <strong>HISTO</strong>gram for the variable specified on the <strong>GRAPH</strong> command. Only one variable can be specified. A few outliers may complicate the scaling of the histogram. Therefore, by default, the histogram is centered</td>
</tr>
</tbody>
</table>
around the mean with a scale of 3 standard deviations on either side of
the mean. When the **RANGE** option is specified, the scale of the
histogram is based on the entire range of the data. See also the
**GROUPS**= option.

**KEY/NOKEY**

By default, a key is displayed in the upper right-hand corner. Use
**NOKEY** to suppress the key.

**LINE**

Used to draw a line connecting the data points and plot a symbol at each
point.

**LINEONLY**

Used to only draw a line connecting the data points. No symbols at the
data points will be plotted.

**RANGE**

Utilizes the entire **RANGE** of the data for plotting the histogram when
the **HISTO** option is used.

**TIME**

Plots the listed *depvars* sequentially against **TIME**. In this case, *indep* is
not specified.

**TIMEFMT**

Specifies that the *indep* variable on the **GRAPH** command is a time date
variable with a format as given on the previous **TIMEFMT** command.  
Description of the **TIMEFMT** command is available later in this chapter.

**BEG=, END=**

Sets a sample range for the particular **GRAPH** command. This sample
size is in effect only for the **GRAPH** command with this option. If these
options are not specified, the sample range for the current **SAMPLE**
command is used.

**COMMFILE=**

Gives the filename for the gnuplot command file (8 characters
maximum).

**DATAFILE=**

Gives the filename for the gnuplot data file (8 characters maximum).

**DEVICE=**

Specifies the type of device for gnuplot output. The default is the
terminal screen. The option **DEVICE=POSTSCRIPT** sends output to a
PostScript file. The gnuplot command **set term** gives the complete list of
valid options.
GROUPS=  When the HISTO option is used SHAZAM normally places data into 6 groups. This option can be used to specify up to 60 groups. The values allowed for GROUPS= are 2, 3, 4, 5, 6, 10, 12, 15, 30 or 60.

OUTPUT=  Gives the filename for the gnuplot output file (8 characters maximum) when the DEVICE= option is used. When DEVICE=POSTSCRIPT is used the default output filename is GNU.ps.

PORT=   Use PORT=NONE to obtain gnuplot command and data files but no gnuplot output.

The SET NOGRAPH command suppresses the display of gnuplot graphs that are generated with the GRAPH command. The gnuplot command and data files with the extension .GNU will still be created.

THE AXISFMT AND TIMEFMT COMMANDS

The TIMEFMT command can precede a GRAPH command that specifies the TIMEFMT option. It specifies the date format of the indep variable. The date variable must contain numeric values. The general format is:

**TIMEFMT format**

where *format* contains descriptors from the list:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>%d</td>
<td>day of the month</td>
<td>1 - 31</td>
</tr>
<tr>
<td>%m</td>
<td>month of the year</td>
<td>1 - 12</td>
</tr>
<tr>
<td>%y</td>
<td>year</td>
<td>0 - 99</td>
</tr>
<tr>
<td>%Y</td>
<td>year</td>
<td>4-digit</td>
</tr>
<tr>
<td>%j</td>
<td>day of the year</td>
<td>1 - 365</td>
</tr>
<tr>
<td>%H</td>
<td>hour</td>
<td>0 - 24</td>
</tr>
<tr>
<td>%M</td>
<td>minute</td>
<td>0 - 60</td>
</tr>
<tr>
<td>%S</td>
<td>second</td>
<td>0 - 60</td>
</tr>
</tbody>
</table>

Note that upper case and lower case must be used correctly. The format rules generally conform to the style of gnuplot. For more details, open gnuplot and at the gnuplot command prompt type help timefmt or help format. For example, a partial listing of a data file with daily data on the Canadian / U.S. dollar exchange rate is:
The first column contains the date in the form YYYYMMDD. This is specified with the command:

```
timefmt %Y%m%d
```

The **AXISFMT** command can precede a **GRAPH** command that specifies the **AXISFMT** option as well as the **TIMEFMT** option. It specifies the date format of the x-axis labels. By default, the format is as specified with the **TIMEFMT** command. The general format is:

**AXISFMT** format

A separator character such as / can be used between the format descriptors. For the daily exchange rate data set, to obtain x-axis labels with the format YY/MM the following SHAZAM commands can be used.

```
sample 1 1006
read (uscan.dat) date exch
timefmt %Y%m%d
axisfmt %y/%m
graph exch date / timefmt axisfmt lineonly
```

The next example uses monthly seasonally adjusted data on the unemployment rate for Canada from 1980 to 1998. The **TIME** command is used to set a variable that contains monthly dates in the form YYYY.MM. The **TIMEFMT** and **AXISFMT** commands then set the date formats for a plot of the data with the **GRAPH** command.

```
sample 1 228
read (urate.dat) obs urate
time 1980 12 date
timefmt %Y.%m
axisfmt %y/%m
graph urate date / timefmt axisfmt lineonly
```

**THE PLOT COMMAND**

In general, the format of the **PLOT** command is:
PLOT depvars indep / options

The following options as specified for the GRAPH command are available: RANGE, TIME, BEG=, END= and GROUPS=. Additional options are:

ALTERNATE Alternates the symbols "X" and "O" in plotting columns of the histogram when the HISTO option is used. It is especially useful with the GROUPS= option.

HISTO Plots HISTograms for the variables specified on the PLOT command. A separate histogram is done for each variable in the list. Each histogram takes one page of computer output. If NOWIDE is specified the histogram will be half the regular size. See also the HISTO, RANGE and GROUPS= options as described for the GRAPH command and the ALTERNATE option described above.

HOLD HOLDS the printing of the plot. The contents of this plot will be saved for the next PLOT command. At that time the plot will be blanked out unless the NOBLANK option is used.

NOBLANK Prevents the plot from being initialized with blanks, to allow the plot to be imposed on the plot previously specified with the HOLD option. The HOLD and NOBLANK options would be used if, for example, a plot with different symbols for each part of the sample were desired.

NOPRETTY SHAZAM attempts to make pretty intervals on the axes by checking the range of the data. This usually works, but sometimes the labels are not acceptable. The NOPRETTY option will tell SHAZAM not to attempt to make the axes pretty and just use the range of the data directly.

SAME/ NOSAME Plots depvars against the indep on the SAME plot. The two relationships are distinguishable by their differing point symbols. See the SYMBOL= option for further details. No more than 8 dependent variables should be plotted against the independent variable on the same plot. The default is SAME.
WIDE
NOWIDE  NOWIDE reduces the size of the plot in the printed output. All of the reduced plot can be seen on a terminal screen as it takes up less than 80 columns. The default value is explained in the chapter SET AND DISPLAY.

SYMBOL=  Specifies the SYMBOLs to be used. The default symbols, in order, are *, +, 0, %, $, #, !, @.

XMIN= XMAX= YMIN= YMAX=  Specifies the desired range for either the X or Y axis. The NOPRETTY option must be used with these options otherwise SHAZAM attempts to make pretty intervals on the axis by checking the range of the data. If these are not specified the computed MINimum and MAXimum for the variables will be used.

EXAMPLES

An example of the use of the GRAPH command for plotting the Theil textile data is:

```
graph consume income price year / lineonly
```

The graph will appear in a separate window. This will initiate the creation of gnuplot command and data files with the extension .GNU. The gnuplot command file is COMM.GNU. When the SHAZAM run has finished the plot can be viewed again. Open windows gnuplot, click on the Open button and enter the name of the gnuplot command file.

The plot can be printed on paper or saved to a PostScript file for subsequent printing. For example, the plot can be saved to the PostScript file MYPLOT.PS with the SHAZAM command:

```
graph consume income price year / lineonly device=postscript output=myplot.ps
```

Customizing the Plot

SHAZAM prepares a basic gnuplot command file ready for the user to customize from within the SHAZAM Environment. For advanced customization this command file is also available for the user to customize with additional labels, arrows, titles, scaling of axes etc. to obtain report quality graphics. The gnuplot command file COMM.GNU may look like:
The file **C000.GNU** has the gnuplot commands and, for the Theil textile data example, a listing of this file is:

```plaintext
set samples 17
set key
set xlabel "YEAR"
set ylabel
plot "D000.GNU" using 1: 2 title "CONSUME" w lines,
 "D000.GNU" using 1: 3 title "INCOME" w lines,
 "D000.GNU" using 1: 4 title "PRICE" w lines
```

This file gives a simple example of gnuplot commands for plotting time series data. The **plot** command plots the time series from the data file **D000.GNU**. If the gnuplot files are to be saved for future use then the **.GNU** files should be renamed so they will not be overwritten by future SHAZAM runs. If gnuplot files from a SHAZAM run are not needed for future work then the **.GNU** files can be deleted.

**GNUPLOT** is case sensitive and commands are typically lower case only. To obtain on-line documentation about gnuplot features start gnuplot and at the gnuplot command prompt type: **help**. To exit the gnuplot program type: **exit**. For more information about using gnuplot with SHAZAM see the **HOW TO RUN SHAZAM** chapters.

The gnuplot command file can be customized by using the various options available with the **set** command. This is illustrated below. The **C000.GNU** file is modified to include titles and labelling of the time series. Note that the **#** symbol is used for a gnuplot comment. The first two commands are required to send the output to the PostScript file **MYPLOT.PS**. The **set nokey** command is used to omit the key that gives the data description. Then, as a replacement to the key, the **set label** commands are used to place identifiers on the time series.

```plaintext
set term postscript
set output "MYPLOT.PS"
set samples 17
set title "Textile Demand in the Netherlands (Source: Theil [1971])"
set nokey
set xlabel "YEAR"
set ylabel "Index (1925=100)"
Put in labels for the time series
set arrow 1 from 1930.5,130 to 1930,136
set label "Textile consumption per capita" at 1930.7,130
set arrow 2 from 1932.5,107 to 1932,105.3
set label "Income per capita" at 1932.7,107
set arrow 3 from 1930.5,84 to 1930,82.8
set label "Relative price of textiles" at 1930.7,84

```

```
The graph is displayed below.
6. GENERATING VARIABLES

"The government are very keen on amassing statistics. They collect them, add them, raise them to the nth power, take the cube root and prepare wonderful diagrams. But you must never forget that every one of these figures comes in the first instance from the village watchman, who just puts down what he damn well pleases."

Anonymous, Quoted in Sir Josiah Stamp, Some Economic Factors in Modern Life

This chapter describes commands for generating variables, selecting sub-sets of observations and performing numeric differentiation and integration.

THE GENR COMMAND

The GENR command will create new variables from old ones and do a variety of data transformations. The SAMPLE command defines the observation range used in GENR commands.

In general, the format of the GENR command is:

```
GENR var = equation
```

where var is the name of the variable to be generated and equation is any arithmetic equation which involves variables, constants and mathematical functions. The available mathematical operators are:

<table>
<thead>
<tr>
<th>Priority-level</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unary – (see note below)</td>
</tr>
<tr>
<td>1</td>
<td>unary functions (see list below)</td>
</tr>
<tr>
<td>2</td>
<td>** (exponentiation)</td>
</tr>
<tr>
<td>3</td>
<td>*, / (multiplication, division)</td>
</tr>
<tr>
<td>4</td>
<td>+, – (addition, subtraction)</td>
</tr>
<tr>
<td>5</td>
<td>.EQ., .NE., .GE., .GT., .LE., .LT. (relational operators)</td>
</tr>
<tr>
<td>6</td>
<td>.NOT. (logical operator)</td>
</tr>
<tr>
<td>7</td>
<td>.AND. (logical operator)</td>
</tr>
<tr>
<td>8</td>
<td>.OR. (logical operator)</td>
</tr>
</tbody>
</table>
The available unary functions are:

ABS(*x*) \hspace{1em} \text{absolute value}

DUM(*x*) \hspace{1em} \text{dummy variable generator}

EXP(*x*) \hspace{1em} \(e^x\)

INT(*x*) \hspace{1em} \text{integer truncation}

LAG(*x*) \hspace{1em} \text{lag a variable one time period}

LAG(*x*,*n*) \hspace{1em} \text{lag a variable n time periods}

LGAM(*x*) \hspace{1em} \log gamma function, \(\log(\Gamma(x))\)

LOG(*x*) \hspace{1em} \text{natural logs}

MAX(*x*,*y*) \hspace{1em} \text{maximum of two variables}

MIN(*x*,*y*) \hspace{1em} \text{minimum of two variables}

MOD(*x*,*y*) \hspace{1em} \text{modulo arithmetic, remainder of } x/y

NCDF(*x*) \hspace{1em} \text{standard normal cumulative distribution function}

NOR(*x*) \hspace{1em} \text{normal random number with standard deviation } x

SAMP(*x*) \hspace{1em} \text{draw a sample with replacement from the variable } x \text{ starting at observation 1}

SEAS(*x*) \hspace{1em} \text{seasonal dummy variable with periodicity } x

SIN(*x*) \hspace{1em} \text{sine (} x \text{ measured in radians)}

SIN(*x*,\(-1\)) \hspace{1em} \text{arcsine (defined for } x \text{ in the interval } [-1,1])

SQRT(*x*) \hspace{1em} \text{square roots}

SUM(*x*) \hspace{1em} \text{cumulative sum of variable } x

SUM(*x*,*n*) \hspace{1em} \text{sum of } n \text{ observations on variable } x \text{ starting at observation 1}

TIME(*x*) \hspace{1em} \text{time index plus } x

UNI(*x*) \hspace{1em} \text{uniform random number with range (0},x)\text{)}

The order of operations of mathematical expressions in SHAZAM conforms to the priority levels given above. Among operations of the same priority, expressions are executed from left to right. To avoid confusion use as many levels of parentheses as desired. Multiplication is assumed with ”\()\)” and is treated as ”\(*\)\)”.

Note that the expression \(X**-A\) is not permitted. This should be entered as \(X**(-A)\). The expression \(-X**A\) is evaluated as \(-(X**A)\).

As a general rule, undefined values are set to a missing value code. For example, operations like **LOG** or **SQRT** of a negative number will generate undefined values. The missing value code has a default of \(-99999\) but can be changed with the **SET MISSVALU**=
GENERATING VARIABLES

option. The temporary variable $MISS$ stores the missing value code. The \texttt{LAG} function sets zero values for initial observations.

When the \texttt{SET SKIPMISS} command is in effect the \texttt{GENR} command will assign a missing value code to results that involve a computation with a missing observation. For more details see the chapter \textit{SET AND DISPLAY}.

A variable with a common scalar element everywhere can be created by using the command format:

\texttt{GENR newvar=var(element)}

where \texttt{element} is a number or the name of a scalar variable. For example, to generate a variable that takes on the value of the third observation of the variable \texttt{A}, the following command is appropriate:

\texttt{genr athree=a(3)}

The example below illustrates the use of \texttt{GENR} commands for a case where Theil's [1971, p. 102] textile data has been read in and a series of new variables needs to be created.

\texttt{sample 1 17}
\texttt{read(11) year consume income price}
\texttt{genr price=price/100}
\texttt{genr pccons=(consume-\texttt{lag}(consume))/\texttt{lag}(consume)}
\texttt{genr t=\texttt{time}(0)}

The first \texttt{GENR} command is used to change the units of the variable \texttt{PRICE}. The second \texttt{GENR} command is used to generate a variable for the percentage change of consumption from the preceding year. Note that observation 1 of \texttt{PCCONS} will not be defined properly since \texttt{LAG(CONSUME)} does not exist for the first observation. A warning message will be printed. The third \texttt{GENR} command is used to generate a variable \texttt{T} with observation values 1, 2, 3, \ldots, 17.

\textbf{DUM function}

The DUM(x) function will create a dummy variable equal to one when x is positive and equal to zero for observations when x is not positive. For example:

\texttt{genr d1=\texttt{dum}(3)}
The first example of the DUM(x) function creates a dummy variable that is always equal to one. The second creates a dummy variable that is equal to zero for the first 6 observations and equal to one otherwise. The last example uses the variables CONSUME and INCOME from Theil's textile data and creates a dummy variable equal to one when the relation inside parentheses is positive or zero and equal to zero otherwise. It is also possible to create a matrix of seasonal dummy variables. For information on this procedure, see the chapter MATRIX MANIPULATION.

LAG function

The LAG(x,n) function will lag the variable x, n times. When only one lag is desired the n can be left off the function (i.e. LAG(x)). The first n observations are undefined when the LAG(x,n) function is used. SHAZAM replaces these observations with zeros. It is not necessary to change the sample size to use the LAG(x,n) function, but warning messages will appear whenever this function is used without proper sample commands. In fact, changing the sample size before generating new variables can cause further sample size problems. However, the sample size should be changed to start at n+1 before estimation. The LAG(x,n) function must be used only on predefined variables and not on functions of variables. So, for example:

```
     genr x=lag(sqrt(y),3)
```

will result in an error message. To avoid this error two GENR commands can be used:

```
     genr  z=lag(y,3)
     genr  x=sqrt(z)
```

or one:

```
     genr  x=sqrt(lag(y,3))
```

It is possible to lead future variables by using a negative value for n on the LAG(x,n) function. For example:

```
     genr  xt=lag(x,-1)
```

Note that in this case the final observation of XT may not be defined.
The next example shows the computation of a 3-period centered moving average for the variable P. The result is stored in the variable $SMA3$.

```plaintext
genr sma3=(lag(p)+p+lag(p,-1))/3
```

The **GENR** command implements recursive calculations when the right hand side variables are **LAG** functions of the left hand side variable. For example, the series:

$$X_t = 0.8X_{t-1} + Z_{t-1}$$

can be generated with the command:

```plaintext
genr x=0.8*lag(x)+lag(z)
```

Note that the command:

```plaintext
genr x=lag(x)
```

does not give the same result as the command:

```plaintext
genr y=lag(x)
```

That is, when using the **LAG** function, if a recursive calculation is not required then the left side variable must not be one of the variables in the **LAG** function.

LGAM function

The **LGAM** function is used to compute the log of the mathematical gamma function $\Gamma(x)$ which is used in a number of probability distributions, including the gamma, beta, chi-square and F distributions.

A result from calculus is that for an integer x: $\Gamma(x) = (x-1)!$

Therefore, $x!$ (x factorial) can be calculated with the command:

```plaintext
genr xfac=exp(lgam(x+1))
print xfac
```

This should be used with caution since as x increases the value for $x!$ rapidly becomes extremely large.
LOG function

The LOG(x) function is used to take natural logarithms. The relationship between natural log and logarithm to the base 10 is:

\[\ln_e(x) = 2.3026 \cdot \log_{10}(x) \]

Therefore, a command that will obtain the logarithm to the base 10 of each element in the variable A is:

```plaintext
genr log10 = log(a) / 2.3026
```

MOD function

The MOD(x,y) function is used to compute the remainder of a division. For example: MOD(15,4)=3.

NCDF function

The NCDF(x) function returns the probability associated with the standard normal cumulative distribution function at the value x. The probability will be in the [0,1] range. The use of the NCDF(x) function is illustrated below. In the example Z is generated to take on the values 0 to 2.2 in increments of 0.2.

```plaintext
|_SAMPLE 1 12
|_GENR Z = (TIME(0) - 1) / 5
|_GENR P = NCDF(Z)
|_PRINT Z P

<table>
<thead>
<tr>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5000000</td>
</tr>
<tr>
<td>0.2000000</td>
<td>0.5792597</td>
</tr>
<tr>
<td>0.4000000</td>
<td>0.6554217</td>
</tr>
<tr>
<td>0.6000000</td>
<td>0.7257469</td>
</tr>
<tr>
<td>0.8000000</td>
<td>0.7881446</td>
</tr>
<tr>
<td>1.0000000</td>
<td>0.8413447</td>
</tr>
<tr>
<td>1.2000000</td>
<td>0.8849303</td>
</tr>
<tr>
<td>1.4000000</td>
<td>0.9192433</td>
</tr>
<tr>
<td>1.6000000</td>
<td>0.9452007</td>
</tr>
<tr>
<td>1.8000000</td>
<td>0.9640697</td>
</tr>
<tr>
<td>2.0000000</td>
<td>0.9772499</td>
</tr>
<tr>
<td>2.2000000</td>
<td>0.9860966</td>
</tr>
</tbody>
</table>
```

To obtain the inverse NCDF and save the result in the variable Z use the commands:
GENERATING VARIABLES

\texttt{genr \ pa=1-p} \\
\texttt{distrib \ pa / inverse \ type=normal \ crit=z}

Further information on the \texttt{DISTRIB} command is in the chapter \textit{PROBABILITY DISTRIBUTIONS}.

\textbf{NOR function and UNI function}

The \texttt{GENR} command can be used to generate random numbers. The random number generator is usually initialized by the system clock. Users can generate all their data if they have none to be read in. The next example shows the use of the \texttt{GENR} command for generating random numbers from selected probability distributions.

\texttt{sample 1 30} \\
\texttt{genr \ x1=uni(2)} \\
\texttt{genr \ x2=5+nor(1)} \\
\texttt{genr \ chi3=nor(1)**2+nor(1)**2+nor(1)**2} \\
\texttt{genr \ chi5=nor(1)**2+nor(1)**2+nor(1)**2+nor(1)**2+nor(1)**2} \\
\texttt{genr \ f35=(chi3/3)/(chi5/5)}

The \texttt{SAMPLE} command sets the number of observations to generate. The first \texttt{GENR} command creates a new variable called \texttt{X1} with values from a uniform distribution with a range of 0 to 2. The second \texttt{GENR} command creates a new variable called \texttt{X2} with values from a normal distribution with a mean equal to 5 and a standard deviation equal to 1.

The final three \texttt{GENR} commands show how to generate values from an F-distribution. Consider $Z_1^2, Z_2^2, \ldots, Z_{n_1}^2$ as independent standard normal random variables then

$$
\sum_{k=1}^{n_1} Z_k^2 \sim \chi_{n_1}^2
$$

is a chi-square random variable with n_1 degrees of freedom. With $\chi_{n_1}^2$ and $\chi_{n_2}^2$ as independent chi-square random variables then a variable with the F-distribution with n_1 and n_2 degrees of freedom is constructed as:

$$
F_{n_1, n_2} = \frac{n_2}{n_1} \frac{\chi_{n_1}^2}{\chi_{n_2}^2}
$$

The \texttt{GENR} commands generate the variables \texttt{CHI3} and \texttt{CHI5} as chi-square variables with 3 and 5 degrees of freedom respectively. The variable \texttt{F35} is then from an F-distribution with 3 and 5 degrees of freedom.
The command **SET RANFIX** (described in the chapter *SET AND DISPLAY*) typed before the **GENR** statement will prevent the random number generator from being set by the system clock. Therefore, the same set of random numbers will be generated in repeated runs. Otherwise, the random number generator will generate a different set of random numbers when requested. The normal random number algorithm is described in Brent [1974].

SAMP function

The **SAMP(x)** function draws a sample (with replacement) from a variable starting at observation 1. In the example below the variable **BIGX** has 100 observations. A new variable with 20 observations is generated by sampling with replacement.

```
sample 1 100
read (x.dat) bigx
sample 1 20
genr newx=samp(bigx)
```

The **SAMP** function is useful for bootstrapping experiments (see the example in the chapter *PROGRAMMING IN SHAZAM*).

SIN function

For any number x sine and cosine are related by the rule \(\cos(x) = \sin(x+\pi/2) \). Therefore the cosine function for a variable **X** can be generated with the command:

```
genr cosx=sin(x+$pi/2)
```

Note that **$PI** is a SHAZAM temporary variable that contains the value of \(\pi \).

The tangent function can be generated using the definition: \(\tan(x) = \sin(x)/\cos(x) \). The relation between arc sin(x) and arc cos(x) is: \(\arccos(x) = \pi/2 - \arcsin(x) \). Therefore values for arccosine can be calculated with the command:

```
genr arccosx=($pi/2)-sin(x,-1)
```

The inverse tangent can be expressed in terms of the inverse sine function as:

\[
\text{arc tan} \, (x) = \arcsin \left(\frac{x}{\sqrt{1 + x^2}} \right)
\]
SUM function

The SUM(x) function creates a cumulative sum of the variable x. For example,

```
genr  x=sum(2)
```

creates a variable that takes on the values 2, 4, 6, ... The SUM function can be used to
create a capital stock series from a net investment series. For example, if the initial capital
stock is 25.3 then the GENR command is:

```
genr kapital=25.3+sum(invest)
```

The SUM(x,n) function will sum up n successive observations on the variable x starting at
observation 1. This can be used to convert monthly data to quarterly or yearly data, as in
the following example:

```
sample 1 120
read (cpi.dat) mcpi

* Convert to annual data using 12-month averages
sample 1 10
genr ycpi=(sum(mcpi,12))/12
```

SHAZAM calculates the sum of the first 12 observations of the variable MCPI and then
divides this number the first observation in the new variable YCPI. It continues this for subsequent observations in MCPI, until it has created 10 observations for YCPI. The SAMPLE command which precedes the GENR statement tells
SHAZAM the size of the new variable. This is only necessary if the new variable is to have
a different length than that specified by the current SAMPLE command.

It is often useful to compute a variable total. The recommended way of doing this is with
the SUMS= option on the STAT command (see the chapter DESCRIPTIVE STATISTICS).
For example, to compute the sum of all elements of X and save the result in TOTX the
following command can be used:

```
stat  x / sums=totx
```

TIME function

The TIME(x) function creates a time index. For example, the command:
generating variables

gener t = time(0)

creates a time index so that the first observation is equal to 1 and the rest are consecutively numbered. The command:

gener t = time(1929)

will create a time index so that the first observation is equal to 1930. See the TIME command in the chapter MISCELLANEOUS COMMANDS AND INFORMATION for an alternate way to create a time index.

Relational and logical operators

The operators available for use in GENR commands are:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.EQ.</td>
<td>Equal (=)</td>
</tr>
<tr>
<td>.NE.</td>
<td>Not equal (≠)</td>
</tr>
<tr>
<td>.GE.</td>
<td>Greater than or equal (≥)</td>
</tr>
<tr>
<td>.GT.</td>
<td>Greater than (>)</td>
</tr>
<tr>
<td>.LE.</td>
<td>Less than or equal (≤)</td>
</tr>
<tr>
<td>.LT.</td>
<td>Less than (<)</td>
</tr>
<tr>
<td>.AND.</td>
<td>Logical conjunction</td>
</tr>
<tr>
<td>.OR.</td>
<td>Logical disjunction</td>
</tr>
<tr>
<td>.NOT.</td>
<td>Logical negation</td>
</tr>
</tbody>
</table>

A value of 1 is generated if an expression is true, and a value of 0 if it is false. Parentheses should be used to ensure the correct order of processing. For example:

gener x5 = (x1.eq.x2)
gener x6 = (x1.le.x2) .or. (x3.gt.0.5)
gener x7 = (time(0).eq.18)
gener x8 = (uni(1).le.0.6)
gener x1 = (x1.ge.0)*x1

The first two examples create dummy variables equal to 1 if the condition is met, and 0 otherwise. The third example creates a dummy variable equal to 1 for observation 18 only. The fourth example creates a binomial random variable from the uniform random number generator. The variable will take on a value of 1 for approximately 60% of the observations and a value of 0 for the rest. Of course, the probabilities are true only for the population
and may differ for any sample. The last example will set all negative values of \(X_1\) to 0. Note that the old \(X_1\) is replaced by the new \(X_1\).

THE GEN1 COMMAND

The **GEN1** command is used to generate a scalar variable or constant. The **GEN1** command is equivalent to using both a **SAMPLE 1 1** command and a **GENR** command to generate a variable with only one observation. It is faster because it removes the need for the **SAMPLE 1 1** command. **SKIPIF** commands do not affect the **GEN1** command.

The format of the **GEN1** command is:

\[
\text{GEN1 } \text{constant } = \text{equation}
\]

For example:

```
gen1 nob=$n
```

saves the value of the number of observations in the variable \(NOB\). See the chapter **ORDINARY LEAST SQUARES** for a description of the temporary variable \$N\).

An element of a vector can be saved as a scalar with the command format:

\[
\text{GEN1 } \text{constant } = \text{var(element)}
\]

The next example saves the coefficient estimates from OLS estimation in the variable \(BETA\). Then element \(K\) of the variable \(BETA\) is saved in the scalar \(B0\).

```
ols consume income price / coef=beta
gen1 k=$k
gen1 b0=beta(k)
```

A useful feature of the **GEN1** and **GENR** commands is to use it as a desk calculator. If the = sign is left out of the equation, SHAZAM will simply print the result. For example, the command:

```
gen1 log(2*3.14159)
```

will give the output:
THE IF COMMAND

The **IF** command is a conditional **GENR** command. The format of the **IF** command is:

\[
\textbf{IF}(\text{expression}) \text{ statement}
\]

where **expression** is an expression in parentheses to be evaluated. If the expression is true or positive, the remainder of the **IF** command is executed. For example:

\[
\begin{align*}
\text{if}(x1\geq 0) & \quad x4 = \sqrt{x1} \\
\text{if}(2+x2/6) & \quad x2 = x2 + 12 \\
\text{if}(x2) & \quad x3 = x2
\end{align*}
\]

The first **IF** condition states that if \(X1\) is greater than or equal to zero then \(X4\) is equal to the square root of \(X1\). The second **IF** condition states that if \(X2\) divided by 6 plus 2 is positive then \(X2\) is equal to \(X2\) plus 12. The third **IF** condition states that if \(X2\) is positive then \(X3\) is equal to \(X2\).

Note that some observations for a variable may not be defined if the **IF** condition is not true. In this case, the variable will be set to zero when the variable is initially created. For example, for the first **IF** command shown above, the variable \(X4\) is undefined when \(X1\) is less than zero and is thus equal to zero for these observations.

The **IF** command can also be used to conditionally execute any SHAZAM command on the line following the **IF** command. For example, if you only wanted to run an **AUTO** command when the Durbin-Watson statistic for the OLS regression is less than 1.0, you would use:

\[
\begin{align*}
\text{ols} & \quad y \ x \ / \ rstat \\
\text{if} & \quad ($dw \lt 1.0) \\
\text{auto} & \quad y \ x
\end{align*}
\]

If the **IF** command is used on a vector of observations (rather than a scalar as in the example above) the command following the **IF** command will be executed if the **IF** condition is true for any observation in the sample.
A set of SHAZAM commands can be placed in a SHAZAM procedure as described in the chapter *SHAZAM PROCEDURES*. The **IF** command can then be used to conditionally execute the set of commands in the procedure. The format is:

\[
\text{IF}(\text{expression})
\]
\[
\text{EXEC \ proc_name}
\]

THE IF1 COMMAND

The **IF1** command is equivalent to using both a **SAMPLE 1 1** command and a **IF** command to perform an operation only on the first observation. It is faster because it removes the need for the **SAMPLE 1 1** command. It is used primarily when checking either temporary variables or variables that have been generated with the **GEN1** command.

The format of the **IF1** command is:

\[
\text{IF1}(\text{expression})\text{ statement}
\]

For example:

\[
\text{gen1 sigg=}$\text{sig2}
\]
\[
\text{if1(sigg.gt.0) sig=} \sqrt{\text{sigg}}
\]

THE SKIPIF COMMAND

The **SKIPIF** command is used to specify conditions under which observations are to be skipped for most commands. (The observations will still be held in memory and in data files.) The format of the **SKIPIF** command is:

\[
\text{SKIPIF (expression)}
\]

where the **expression** may use arithmetic or logical operators such as those described for **GENR** and **IF** commands. The observation will be skipped if the value of the expression is positive; otherwise, the observation is retained.

Some examples of **SKIPIF** commands are:
The first **SKIPIF** example skips the observations when the sum of \(X3\) and \(X4\) is equal to \(X5\). The second **SKIPIF** example skips the observations when \(X3\) is greater than \(X12\). The third **SKIPIF** example skips the observations where \(X4\) is equal to zero or \(X5\) is equal to zero. The fourth **SKIPIF** example skips the observations where the \(TIME\) variable is equal to 6. The fifth **SKIPIF** example will skip the observations where \(X1\) is positive. The sixth **SKIPIF** example will skip the observations where the result of the lagged value of \(X2\) plus 3 divided by 12 minus \(X4\) is positive. The seventh **SKIPIF** example skips the observations where the variable \(PROVINCE\) is equal to MANITOBA. Note that if characters are used in the command they must be enclosed in double quotes (") and only upper case comparisons are valid. The final **SKIPIF** example skips the observations where the absolute value of \(X3\) plus \(X4\) minus \(X5\) is less than or equal to 0.0001.

Users should be aware that the test for equality between two numbers may sometimes fail due to rounding error in the computer. The first example above is a typical case where the problem might occur. The last example gives a possible remedy.

Users should take care to express **SKIPIF** commands accurately. A common error is to skip all the observations so that no data is left, for example:

```plaintext
skipif (a.ge.0)
skipif (a.lt.0)
```

If a large number of consecutive observations are to be skipped at the beginning or end of the data, it is more efficient to omit them with the **SAMPLE** command than with **SKIPIF** commands.

The **SKIPIF** command automatically creates a special variable called **SKIP$** and initializes it to be zero for each observation. Then, for any observation to be skipped, **SKIP$** is set equal to one.

Note that the **SKIP$** variable is set at the time the **SKIPIF** command is executed. For example:

```plaintext
skipif (x3+x4.eq.x5)
skipif (x3.gt.x12)
skipif ((x4.eq.0).or.(x5.eq.0))
skipif (time(0).eq.6)
skipif (x1)
skipif (lag(x2+3)/12-x4)
skipif (province.eq."manitoba")
skipif (abs(x3+x4-x5).le.0.0001)
```
would not skip any observations since all observations in A were zero at the time the \texttt{SKIPIF} condition was evaluated.

Sometimes the entire data set is required including those observations skipped on \texttt{SKIPIF} commands. It is possible to temporarily turn off the \texttt{SKIPIF} commands that are in effect. This requires the \texttt{SET} command:

\begin{verbatim}
set noskip
\end{verbatim}

To put the \texttt{SKIPIF}'s back in effect the \texttt{SET} command is again used:

\begin{verbatim}
set skip
\end{verbatim}

To permanently eliminate all \texttt{SKIPIF} commands in effect, the \texttt{DELETE} command is used:

\begin{verbatim}
delete skip$
\end{verbatim}

If the \texttt{DELETE} command has been used to eliminate all \texttt{SKIPIF} commands it is not necessary to use the \texttt{SET SKIP} command to use the \texttt{SKIPIF} command again.

\texttt{SKIPIF} commands are in effect for \texttt{READ}, \texttt{WRITE} and \texttt{PRINT} commands except when a matrix is used or the \texttt{BYVAR} option is used. The \texttt{BYVAR} option is the default for \texttt{WRITE} and \texttt{PRINT} commands when only one variable is specified.

The \texttt{SKIPIF} command will print out messages that tell you which observations have been skipped. If you have many skipped observations you could get many lines of messages. These warnings can be suppressed if you use the \texttt{SET NOWARNSKIP} command.

For the automatic skipping of missing observations the \texttt{SET SKIPMISS} command can be used as described in the chapter \textit{SET AND DISPLAY}. Then, if no longer required, a \texttt{SET NOSKIPMISS} command must be used.
THE ENDIF COMMAND

The **ENDIF** command works like the **IF** command except that when the condition is true for any observation, execution is stopped. If the **ENDIF** command is used inside a **DO**-loop, the **DO**-loop is terminated and execution will continue at the statement after **ENDO**. See the chapter *PROGRAMMING IN SHAZAM* for information on **DO**-loops.

The format of the **ENDIF** command is:

ENDIF(expression)

For example:

```shazam
endif(a.lt.0)
```

The above execution will terminate when the variable *A* is less than zero.

THE DERIV COMMAND

The **DERIV** command is used for obtaining numerical derivatives of an equation. The format of the **DERIV** command is:

DERIV variable resultvar=equation

where *variable* is the variable in the *equation* for which the derivative should be taken with respect to. The evaluated derivatives are placed in the variable *resultvar*. The current **SAMPLE** command will control the observations to be used. For example, if you wish to find the derivative of the equation:

```
2*(consume/income) + 3*price
```

with respect to *INCOME*, use:

```shazam
deriv income result=2*(consume/income) + 3*price
```

The variable *RESULT* will contain all the derivatives as in the output:

```
| _DERIV INCOME RESULT=2*(CONSUME/INCOME) + 3*PRICE
| _PRINT RESULT
|     RESULT
```
The derivative of the function \(f(x_1, x_2, \ldots) \) with respect to \(x_1 \) is approximated by:

\[
\frac{\partial f}{\partial x_1} = \frac{f(x_1 + 2 \cdot h, x_2, \ldots) - f(x_1, x_2, \ldots)}{2 \cdot h}
\]

where \(h \) is the step-length set as \(h = \frac{1}{10^6} \).

THE INTEG COMMAND

The INTEG command can perform numeric univariate integration on any equation. The format of the INTEG command is:

\[
\text{INTEG variable lower upper resultvar=equation}
\]

where the integral of \(\text{equation} \) with respect to \(\text{variable} \) will be taken using the range specified in \(\text{lower} \) and \(\text{upper} \). The result of the integration will be placed in the variable \(\text{resultvar} \). The current SAMPLE command will control the range of observations to be used in the integration. The variables \(\text{lower} \) and \(\text{upper} \) can either be existing variables or simple number values can be supplied.

For example, if you wish to find the cumulative probability for the standard normal distribution which has a density function of:

\[
f(x) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right)
\]

use the commands:

```
sample 1 1
gen1 lower=0
gen1 upper=1
integ x lower upper answer=exp(-.5*x**2)/sqrt(2*$\pi)
print answer
```

The output is:
If the usual output from the INTEG command is not required, it can be suppressed with a "?" prefix, for example:

?integ x lower upper answer=exp(-.5*x**2)/sqrt(2*$pi)

EXAMPLES

Sampling Without Replacement

The SAMP function can be used for sampling with replacement. The SHAZAM commands in this example illustrate sampling without replacement. A variable called X is generated that has 300 observations of random integers between 1 and 2000 with no duplicate numbers in the data set.

```
set ranfix
sample 1 2000
genr x=time(0)
genr ran=uni(1)
sort ran x
sample 1 300
print x / nobyvar
stat x
```

The SET RANFIX command will prevent the random number generator from being set by the system clock so that the same set of random numbers will be generated each time this same command file is executed. The SAMPLE command sets the sample size. The TIME(0) function on the GENR command first generates a set of integers with a range of 1 to 2000. The next GENR command generates a uniform random number. The SORT command then sorts the variables RAN and X in ascending order according to RAN. The second SAMPLE command then selects 300 observations of the original 2000 observations. The PRINT command prints the variable X in vector format rather than BYVARiable format.
Systematic Sampling

Suppose you wanted to take a sub-set of data from a larger data set that consisted of 100 observations. In this example, you want every 5th observation of variables X and Y to be in the new sub-set of data. The SHAZAM commands to achieve this result are:

```shazam
sample 1 100
read(data) x y
skipif(mod((time(0),5)).ne.0)
stat x y
```

The `SAMPLE` command first sets the sample size to 100 observations. The `READ` command locates the data file called `DATA` and reads in the observations for variables X and Y. The `SKIPIF` command first evaluates the expression `TIME(0)` and generates a time index that begins at 1. Then the expression `MOD((TIME(0),5))` divides the time index by 5 and remainder is determined. If the remainder from the `MOD` function is not equal to 0 then the observation is skipped. If the `MOD` function is true then the observation is retained for the sub-set of data. The `STAT` command on X and Y will then print out the descriptive statistics on these two variables. The descriptive statistics should confirm that there are exactly 20 observations for each variable.

Replacing of Missing Values with the Mean

Suppose your data set has a missing observation in row 3 column 1 for the dependent variable, Y. There are two possible ways to deal with the missing data issue. The first method would be to omit the missing observation in the regression. For example, if your regression model is \(Y = \beta_1 + \beta_2 X + \varepsilon \) and the dependent variable, Y, had a missing observation in row 3 then to estimate the model you would omit observation 3 for the dependent variable, Y, and the independent variable X. The number of observations in the regression must be the same for all variables. An example of the SHAZAM commands illustrating how to omit observation 3 assuming there are 7 observations in total is:

```shazam
sample 1 7
read(data.dat) x y
sample 1 2 4 7
ols y x
```

The second `SAMPLE` command tells SHAZAM to use observations 1 to 2 omit observation 3 and use observations 4 to 7 for the OLS regression.

The second method would be to take the average and use it for the missing observation. For example, the data set consists of variables X and Y and the data:
As you will notice observation 3 is missing for variable X. To properly read these variables into SHAZAM you will be required to place a number such as the SHAZAM default missing data code of -99999 in row 3 column 1. SHAZAM will get confused reading in the data file if the number is not in the place of the missing value. For example, if the missing value in row 3 column 1 is left as a blank then the data would be read by SHAZAM as:

```
  1    100
  2    200
  300  4
  400  5
  500  6
  600  7
```

As you can see this is definitely not correct. The correct data file should look like:

```
  1    100
  2    200
  -99999 300
  4    400
  5    500
  6    600
  7    700
```

To calculate the average for the missing observation in row 3 column 1 the SHAZAM commands would be:

```
sample 1 7
read(data.dat) x y
* Skip observation 3 using the sample command
sample 1 2 4 7
* Calculate the mean of x
stat x / mean=xbar
* Place the mean of x in row 3 column 1
sample 3 3
genr x=xbar
sample 1 7
print x y
```
The first **SAMPLE** command tells SHAZAM that there are 7 observations for variables X and Y. The **READ** command reads in the data for the variables. This includes the -99999 that is placed for the missing value. The second **SAMPLE** command tells SHAZAM to use observations 1 to 2 and 4 to 7 for the next command. The **STAT** command calculates the mean value of X and places it into the vector called $XBAR$. The third **SAMPLE** command then sets the sample range to observation 3. The following **GENR** command places the previous stored vector value of $XBAR$ into the variable X at observation 3. Then the fourth **SAMPLE** command changes the sample range to the complete 7 observations and the **PRINT** command prints the results for X and Y. The SHAZAM output shows the results:

<table>
<thead>
<tr>
<th>SAMPLE 1 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT X Y</td>
</tr>
<tr>
<td>1.000000</td>
</tr>
<tr>
<td>2.000000</td>
</tr>
<tr>
<td>4.166667</td>
</tr>
<tr>
<td>4.000000</td>
</tr>
<tr>
<td>5.000000</td>
</tr>
<tr>
<td>6.000000</td>
</tr>
<tr>
<td>7.000000</td>
</tr>
</tbody>
</table>

Also see the **MISSVALU**= and **SKIPMISS** options available on the **SET** command.
7. ORDINARY LEAST SQUARES

"Less is More."
Miës van der Rohe
Architect

The **OLS** command will perform **Ordinary Least Squares** regressions and produce standard regression diagnostics. This was introduced in the chapter *A CHILD’S GUIDE TO RUNNING REGRESSIONS*. In addition, the **OLS** command has an extensive list of options that provides many features for estimation and testing of the linear regression model. For example, tests on the residuals are available with the **DLAG**, **DWPVALUE**, **GF**, and **RSTAT** options. Model selection tests (including the Akaike information criterion and the Schwarz criterion) are available with the **ANOVA** option. Standard errors adjusted for heteroskedasticity or autocorrelation are computed with the **HETCOV** or **AUTCOV** options. Linear restrictions on the coefficients can be incorporated with the **RESTRICT** option. Ridge regression is available with the **RIDGE** option and weighted least squares can be implemented with the **WEIGHT** option.

The SHAZAM output from the **OLS** command includes elasticities evaluated at the sample means. However, the printed elasticities may not be correct if data has been transformed, for example the data is in logarithms. In this case, the **LININV**, **LINLOG**, **LOGINV**, **LOGLIN** or **LOGLOG** options can be specified to obtain meaningful elasticities.

The results from the **OLS** command can be accepted as input by other SHAZAM commands to obtain further analysis of the results. For example, the **DIAGNOS** command is described in the chapter *DIAGNOSTIC TESTS*, the **TEST** and **CONFID** commands are described in the chapter *HYPOTHESIS TESTING AND CONFIDENCE INTERVALS* and the **FC** command is described in the chapter *FORECASTING*.

OLS COMMAND OPTIONS

In general, the format of the **OLS** command is:

OLS depvar indeps / options
where \textit{depvar} is the dependent variable, \textit{indeps} is a list of independent variables and \textit{options} is a list of desired options. If any variable in the list of independent variables is a matrix, SHAZAM will treat each column as a separate explanatory variable. To impose a lag structure on the independent variables see the chapter \textit{Distributed-Lag Models}. The available options on the \texttt{OLS} command are:

ANOVA
Prints the ANalysis Of VAriance tables and the F-statistic for the test that all coefficients are zero. In some restricted models, the F-test from an \texttt{ANOVA} table is invalid. In these cases the F-statistic will not be printed, but may be obtained with the \texttt{TEST} command. Model Selection Tests are also printed. This option is in effect automatically when running in BATCH mode. In TALK mode, the \texttt{ANOVA} option must be specified if the table is desired. In BATCH mode these statistics can be suppressed with the \texttt{NOANOVA} option.

AUXRSQR
Prints the R2 statistics for the auxiliary regressions of each independent variable on all other independent variables. These R2 statistics are useful in detecting multicollinearity (see, for example, the discussion in Griffiths, Hill and Judge [1993, Chapter 13.5]). This option is not implemented when the \texttt{HETCOV} option is specified.

DFBETAS
Computes the DFBETAS statistic. Also see the \texttt{INFLUENCE} option. Further details and an example are given later in this chapter.

DLAG
Computes Durbin's [1970] h statistic as a test for autocorrelation when there is a LAGged Dependent variable in the regression. The lagged dependent variable \textit{must} be the first listed independent variable when this option is used. The h statistic is useful since the Durbin-Watson statistic may not be valid in such situations. Durbin's h statistic cannot always be computed since the square root of a negative number may be required. In such cases, the h statistic will neither be computed nor printed. It is essential to remember that when lagged variables have been generated a \texttt{SAMPLE} command must be included to delete the beginning observations. The statistic is calculated as:

\[
h = \hat{\rho} \sqrt{\frac{N}{1 - N\hat{\sigma}^2_a}} \quad \text{where} \quad \hat{\rho} = \frac{\sum_{t=2}^{N} e_t e_{t-1}}{\sum_{t=2}^{N} e^2_{t-1}}
\]
and e_t are the estimated residuals and $\hat{\sigma}_a^2$ is the estimated variance of the coefficient on the lagged-dependent variable. The Durbin h statistic is asymptotically normally distributed under the null hypothesis of no autocorrelation.

DN Estimates the error variance $\hat{\sigma}^2$ by dividing the residual sum of squares by N instead of $N-K$.

DUMP Dumps large amounts of output mainly useful to SHAZAM consultants.

DWPVALUE Computes the Durbin Watson Probability-VALUE. Suppose the Durbin-Watson test statistic d has a calculated value of DW. For a test of the null hypothesis of no autocorrelation in the errors against the alternative hypothesis of positive autocorrelation the p-value is $P(d < DW)$. For the alternative hypothesis of negative autocorrelation the p-value is $1 - P(d < DW)$. This option automatically uses METHOD=HH. Also see the ORDER= option. The probability is saved in the temporary variable $\$CDF$. Details on the computational method are given in the section *An Exact p-value for the Durbin-Watson Test* in the chapter *PROGRAMMING IN SHAZAM*.

GF Prints Goodness of Fit tests for normality of residuals. Coefficients of skewness and excess kurtosis and the Jarque-Bera test for normality of the residuals are also computed as described in the chapter *A CHILD'S GUIDE TO RUNNING REGRESSIONS*. This option is automatically in effect when running in BATCH mode. In TALK mode, the GF option must be specified if this output is desired. In BATCH mode, this output can be eliminated by specifying NOGF.

GRAPH Prepares GNUPLOT plots of the residuals and the fitted values. For more information on this option see the chapter *PLOTS AND GRAPHS*. With the GRAPH option the APPEND, OUTPUT=, DEVICE=, PORT= and COMMFILE= options are also available as described for the GRAPH command.

HETCOV Uses White's [1980] HETeroskedastic-Consistent COVariance matrix estimation to correct the estimates for an unknown form of heteroskedasticity. This option is not available with METHOD=HH. If this option is used, the forecast standard errors computed by the FC command will not be correct. The formula is:
\[
\begin{align*}
V(\hat{\beta}) &= N(X'X)^{-1}S_0(X'X)^{-1} \\
S_0 &= \frac{1}{N} \sum_{t=1}^{N} e_t^2X_tX'_t
\end{align*}
\]

INFLUENCE Computes the Belsley-Kuh-Welsch [1980, Chapter 2] diagnostics for detecting influential observations. See also the **DFBETAS** and **HATDIAG=** options. The **INFLUENCE** option is not valid with the **RIDGE=, HETCOV**, **AUTCOV=, RESTRICT** or Stepwise Regression options. Further details and an example are given later in this chapter.

LININV Used when the dependent variable is LINear, but the independent variables are in INVerse form. This type of model is known as the reciprocal model. This option only affects the calculation of the elasticities. Consider observations on the explanatory variables as \(Z_{kt} = 1/X_{kt} \). The **LININV** option reports elasticities evaluated at sample means as: \(E_k = -\hat{\beta}_k \cdot \bar{Z}_k / \bar{Y} \). NOTE: This option does not transform the data. The data must be transformed by the user with the appropriate **GENR** commands.

LINLOG Used when the dependent variable is LINear, but the independent variables are in LOG form. In this model the elasticities are estimated as \(E_k = \hat{\beta}_k / \bar{Y} \). NOTE: This option does not transform the data. The data must be transformed by the user with the appropriate **GENR** commands.

LIST **LISTs** and plots the residuals and predicted values of the dependent variable and residual statistics. When **LIST** is specified **RSTAT** is automatically turned on.

LOGINV Used when the dependent variable is in LOG form, and the independent variables are in INVerse form. Consider observations on the explanatory variables as \(Z_{kt} = 1/X_{kt} \). The elasticities are estimated as \(E_k = -\hat{\beta}_k \cdot \bar{Z}_k \). The log-likelihood function is evaluated as in the **LOGLIN** option below. NOTE: This option does not transform the data. The data must be transformed by the user with the appropriate **GENR** commands.

LOGLIN Used when the dependent variable is in LOG form, but the independent variables are LINear. In this model the elasticities are estimated as \(E_k = \hat{\beta}_k \cdot \bar{X}_k \). The log-likelihood function is evaluated as:

\[
- \frac{N}{2} \ln \left(2\pi\hat{\sigma}^2\right) - \frac{N}{2} - \sum_{t=1}^{N} \ln Y_t
\]

where \(\hat{\sigma}^2 = \frac{1}{N} \sum_{t=1}^{N} e_t^2 \)
The R^2 calculation does not take anti-logs of the dependent variable. However, if the RSTAT option is also used the output will report:

\[
R\text{-SQUARE BETWEEN OBSERVED AND PREDICTED = }
\]

\[
R\text{-SQUARE BETWEEN ANTILOGS OBSERVED AND PREDICTED = }
\]

NOTE: This option does not transform the data. The data must be transformed by the user with the appropriate GENR commands.

LOGLOG
Used when the dependent variable and all the independent variables are in **LOG** form. In this model the elasticities are estimated as $E_k = \hat{\beta}_k$. The log-likelihood function and R^2 measure are evaluated as in the LOGLIN option above. NOTE: This option does not transform the data. The data must be transformed by the user with the appropriate GENR commands.

MAX
Prints Analysis of Variance Tables, Variance-covariance matrix, Correlation matrix, Residuals, Residual Statistics and Goodness of Fit Test for Normality. This option is equivalent to using the ANOVA, LIST, PCOV, PCOR and GF options. Users should be sure the MAX output is necessary, otherwise unnecessary calculations are required.

NOCONSTANT
There will be NO CONSTANT (intercept) in the estimated equation. This option is used when the intercept is to be suppressed in the regression or when the user is supplying the intercept. This option should be used with caution as some of the usual output may be invalid. In particular, the usual R^2 is not well defined and could be negative. However, when this option is used, the raw moment R^2 may be of interest. The ANALYSIS OF VARIANCE - FROM MEAN table will not be computed if this option is used.

NOMULSIGSQ
With this option, for classical OLS estimation, the $(X'X)^{-1}$ matrix is used as the complete covariance matrix of the estimated coefficients and is NOT MULTIplied by $\hat{\sigma}^2$.

NONORM
Used with WEIGHT= if you do not want normalized weights. Interpretation of output is sometimes difficult when weights are not normalized. Sometimes, the weights can be viewed as a sampling replication factor. Users are expected to know exactly what their weights represent.

PCOR
Prints the CORrelation matrix of the estimated coefficients. This should not be confused with a correlation matrix of variables which can be
obtained with a STAT command. The elements of the correlation matrix are obtained as:

\[\text{Cor}(\hat{\beta}_i, \hat{\beta}_j) = \frac{\text{Cov}(\hat{\beta}_i, \hat{\beta}_j)}{\sqrt{\text{V}(\hat{\beta}_i)\text{V}(\hat{\beta}_j)}} \quad \text{for} \quad i, j = 1, \ldots, K \]

PCOV

Prints the COVariance matrix of the estimated coefficients (described in the chapter *A CHILD’S GUIDE TO RUNNING REGRESSIONS*). This should not be confused with the covariance matrix of variables which can be obtained with the STAT command.

PIL

Estimation with the polynomial inverse lag technique proposed by Mitchell and Speaker [1986]. For more details see the chapter *DISTRIBUTED-LAG MODELS*.

PLUSH

Prints the LUSH (Linear Unbiased with Scalar covariance matrix using Householder transformation) residuals. The Householder transformation method first finds the N x N orthogonal matrix \(P \) such that:

\[
P'X = \begin{bmatrix} P_1'X \\ P_2'X \end{bmatrix} = \begin{bmatrix} R \\ 0 \end{bmatrix} \quad \text{and} \quad X'X = R'R
\]

where \(P_1 \) is N\times K, \(P_2 \) is N\times(N-K) and \(R \) is a K\times K upper triangular matrix. Note that R'R is a Cholesky factorization of X'X. The OLS coefficient vector is formed by solving \(R\hat{\beta} = P_1'Y \). The \(N-K \) vector of LUSH residuals is computed as \(P_2'Y \). For further details see Golub and Styan [1973].

REPLICATE

Used with WEIGHT= when the weights indicate a sample replication factor. When this option is specified the NONORM option is often desirable. The effective sample size will then be adjusted upward to be equal to the sum of the weights. The UT option is automatically in effect.

RESTRICT

Forces linear RESTRICTions into the regression. It tells SHAZAM that RESTRICT commands follow. An example of this option is shown later in this chapter. Restrictions must be linear. This option may not be used with DWPVALUE or METHOD=HH.

RSTAT

Prints Residual Summary STATistics. The output includes the Durbin-Watson statistic and related residual test statistics. It also includes the
Runs Test described in the chapter *A CHILD’S GUIDE TO RUNNING REGRESSIONS*. When the **LIST** option is specified **RSTAT** is automatically turned on.

UT
Used with **WEIGHT=** for residuals and predicted values that are UnTransformed. The estimated coefficients are used with unweighted data to obtain predicted values. The regression estimates are not affected by this option. This option is not available with **METHOD=HH**.

WIDE
Uses a wider page width for the display of results. For printing, the page set-up should be set to landscape orientation.

AUTCOV=
Specifies the lag length L to use in the Newey and West [1987] variance estimator for models with autocorrelated disturbances. This option is the autocorrelation equivalent to the **HETCOV** option. An explanation of the method is in Greene [2003, p. 267]. Use **AUTCOV=1** until you really understand the method. The variance-covariance matrix of the estimated coefficients is estimated as:

$$V(\hat{\beta}) = N(X'X)^{-1}S_* (X'X)^{-1}$$

where

$$S_* = S_0 + \frac{1}{N} \sum_{j=1}^{L} \sum_{t=j+1}^{N} w_j e_t e_{t-j} (X_t X'_{t-j} + X_{t-j} X'_t)$$

and $w_j = 1 - \frac{j}{L + 1}$

and S_0 is the White estimator described for the **HETCOV** option.

BEG=, END=
Specifies the **BEGinning** and **ENDing** observations to be used in estimation. This option overrides the **SAMPLE** command and defaults to the sample range in effect.

COEF=
Saves the **COEFFicients** in the variable specified. If there is an intercept it will be stored as the last coefficient.

COV=
Saves the **COVariance** matrix of coefficients in the variable specified.

FE=, FX=
Specifies the entering and exiting criteria in terms of **F-values** rather than probability levels when running Stepwise regressions. SHAZAM will use the user-supplied values of **FE=** and **FX=** only when no values are supplied for **PE=** or **PX=**. If either **FE=** or **FX=** is not specified, it will be
defaulted to the other value. If FX>FE then SHAZAM will set FX to FE. If
FE=0 then all of the step variables will be allowed to enter. If the value
specified for FX= is a large number then all of the step variables may be
removed. See the section on STEPWISE REGRESSION in this chapter
for further details.

HATDIAG= Saves the diagonal elements of the Hat matrix \(X(X'X)^{-1}X' \) in the
variable specified.

IDVAR= Specifies a character variable that contains observation labels to be
displayed when the LIST or MAX options are used. The WIDE option
should also be specified. For information on reading and printing
character variables, see the chapter DATA INPUT AND OUTPUT. An
example of the IDVAR= option in use can be found later in this chapter.

INCOEF= Specifies a vector of COEFicients to INput if you know what the
coefficients are and do not want to estimate the equation. An example of
this option is shown in the chapter PROGRAMMING IN SHAZAM for
computing the Power of a Test. Also see the INSIG2= option described
below.

INCOVAR= Specifies a COVARiance matrix to be used with the INCOEF= option.
The covariance matrix must be a symmetric matrix stored in lower-
triangular form such as that produced by the COV= option or the SYM
function on the MATRIX command. When this option is used the
NOMULSIGSQ option is automatically in effect.

INDW= Specifies a value for the Durbin-Watson test statistic. This option may be
used with the DWPVALUE option to get a p-value for the Durbin-
Watson statistic.

INSIG2= Specifies a value of \(\sigma^2 \) to use. Also see the INCOEF= option described
above.

METHOD= Specifies the computational METHOD to use on the OLS command.
The default is GS (Gram Schmidt) as described in Farebrother [1974] and
the alternatives are HH (Householder transformations), and NORMAL
(Choleski solution of Normal equations). All methods should yield
nearly identical results with most data, however GS is probably the
most accurate in most situations.
NPOP= Specifies the population size N^P. When this option is used it is considered that the sample size N is not a small fraction of the population size. The error variance $\hat{\sigma}^2$ is multiplied by the finite population correction factor $(N^P - N)/N^P$. Some discussion is available in Newbold et al. [2003, p. 708].

ORDER= Specifies the order of autocorrelation to test if the DWPVALUE option is used. The default is ORDER=1.

PCINFO= This option is only used on OLS commands in conjunction with the PC command. For more information on this option see the chapter PRINCIPAL COMPONENTS AND FACTOR ANALYSIS.

PCOMP= This option is only used on OLS commands in conjunction with the PC command. For more information on this option see the chapter PRINCIPAL COMPONENTS AND FACTOR ANALYSIS.

PE=, PX= These options are similar to the FE= and FX= options described above, and are used to specify the Probability levels for Entering (PE=) and eXiting (PX=) variables that may be stepped into the equation when a Stepwise regression is being run. If a variable is more significant than the PE level, it will be included. If at any step a variable becomes less significant than PX it will be deleted from the equation. The default values are PE=.05 and PX=.05. If either value is not specified it will be defaulted to the other value. If PX< PE then PX will be set to equal PE. If PE=1 then all of the step variables will be allowed to enter. If PX=0 then all of the step variables will be removed. See the section on STEPWISE REGRESSION in this chapter for further details.

PREDICT= Saves the PREDICTed values of the dependent variable in the variable specified.

RESID= Saves the values of the RESIDuals from the regression in the variable specified.

RIDGE= Specifies a value of k to use to convert the OLS regression to a RIDGE regression. This option only permits ordinary RIDGE regression where the diagonal elements of the $X'X$ matrix are augmented by k. In order to do a RIDGE regression, a value for k must be specified. It may be necessary to run several regressions using different values of k in order to examine the stability of the coefficients. The value of k should be
between zero and one. A value of \(k \) equal to zero will be an OLS regression. The user should be familiar with RIDGE regression before using this option. Watson and White [1976] provide good examples of ridge regression. This option automatically uses METHOD=NORMAL. See the PROGRAMMING IN SHAZAM chapter for a ridge regression example. The ridge coefficients and covariance matrix are estimated as:

\[
\hat{\beta}_R = (X'X + kI)^{-1}X'Y \quad \text{and} \quad V(\hat{\beta}_R) = \sigma^2 (X'X + kI)^{-1}(X'X)(X'X + kI)^{-1}
\]

The INSIG2= option can be used to specify a value of \(\sigma^2 \) to use in the estimate of the covariance matrix for the ridge regression estimates (see the discussion in Greene [2003, p. 58; 1997, p. 424]).

STDERR= Saves the values of the STanDard ERRors of the coefficients in the variable specified.

TRATIO= Saves the values of the T-RATIOs in the variable specified.

WEIGHT= Specifies a variable to use as the weight for a WEIGHTed Least Squares regression. OLS with the WEIGHT= option is similar to a GLS regression with a diagonal Omega matrix. Users should also examine the NONORM, UT and REPLICATE options described above which can be used with the WEIGHT= option. More details and an example are given later in this chapter.

OLS Temporary Variables

There are many temporary variables available on the OLS command. These variables contain useful statistics from the most recent regression command in the SHAZAM run. (For a list of the temporary variables available on each regression command see the chapter MISCELLANEOUS COMMANDS AND INFORMATION.)

The temporary variables available after the OLS command are:

- \$ADR2 R-Square Adjusted
- \$DF Degrees of Freedom
- \$ERR Error Code
K Number of Coefficients

LLF Log of the Likelihood Function

N Number of observations used in the estimation

$R2$ R-Square

RAW Raw-Moment R-Square

$SIG2$ Variance of the Estimate - σ^2

SSE Sum of Squared Errors - SSE

From the ANALYSIS OF VARIANCE - FROM MEAN table in the OLS output:

ANF ANOVA F Statistic

SSR Regression - SS

SST Total - SS

From the ANALYSIS OF VARIANCE - FROM ZERO table in the OLS output:

$ZANF$ ANOVA F Statistic

$ZSSR$ Regression - SS

$ZSST$ Total - SS

If the ANOVA option is used the model selection test statistics available in temporary variables are:

FPE Akaike (1969) final prediction error

$LAIC$ Akaike (1973) information criterion - log AIC

LSC Schwarz (1978) criterion - log SC

GCV Craven-Wahba (1979) generalized cross validation
ORDINARY LEAST SQUARES

HQ Hannan and Quinn (1979) criterion

$RICE$ Rice (1984) criterion

$SHIB$ Shibata (1981) criterion

SC Schwarz (1978) criterion - SC

AIC Akaike (1974) information criterion - AIC

If the **DLAG** option is used an available temporary variable is:

$DURH$ Durbin's h statistic

If the **GF** option is used an available temporary variable is:

JB Jarque-Bera normality test statistic

If the **RSTAT, LIST** or **MAX** option is used the statistics available in temporary variables are:

DW Durbin-Watson statistic

$R2AN$ R-Square between antilogs observed and predicted

$R2OP$ R-Square between observed and predicted

RHO Residual autocorrelation coefficient

If the **DWPVALUE** option is used then an available temporary variable is:

CDF p-value for the Durbin-Watson statistic.

EXAMPLES

Calculating a Chow Test

This example shows how temporary variables can be useful. Consider computing the Chow test statistic to test the hypothesis that the coefficients are the same in two regimes
ORDINARY LEAST SQUARES

(this test is described in the chapter *DIAGNOSTIC TESTS*). The SHAZAM commands that compute the Chow test statistic are:

```shazam
?ols consume income price
gen1 csse=$sse
gen1 df1=$k
gen1 df2=$n-2*$k
sample 1 9
?ols consume income price
gen1 sse1=$sse
sample 10 17
?ols consume income price
gen1 sse2=$sse
gen1 f=(((csse-(sse1+sse2))/df1)/((sse1+sse2)/df2)
sample 1 1
print f
distrib f / type=f df1=df1 df2=df2
```

In the above example three OLS regressions are run. The first uses all the observations in the sample. This is the combined regression. The second and third use the first 9 and last 8 observations in the sample, respectively. The purpose of the Chow test is to test the hypothesis that the coefficients are the same in each of the separate samples. The ? symbol that appears before the OLS commands serves to suppress the output, since only the $SSE variables are of interest in this problem. (For details on the ? output suppressor and temporary variables, see the chapter *MISCELLANEOUS COMMANDS AND INFORMATION*.) The contents of the $SSE temporary variable are saved in a permanent variable before another regression is run because only the most recent values of temporary variables are saved. When saving a scalar variable, like $SSE, the GEN1 rather than GENR command should be used. The variable F contains the Chow test statistic computed as:

$$ F = \frac{(CSSE-(SSE1+SSE2)/K)/((SSE1+SSE2)/(N1+N2-2K)) }{ } $$

where SSE1 is the sum of squared errors for the OLS regression using the first 9 observations, SSE2 is the sum of squared errors for the OLS regression using the last 8 observations, CSSE is the sum of squared errors for the combined OLS regression, K is the number of parameters, N1 is the number of observations in the first separate OLS regression, and N2 is the number of observations in the last separate OLS regression.

The SHAZAM output from the above commands is:

```
?OLS CONSUME INCOME PRICE
GEN1 CSSE=$SSE
```
The final step is to calculate the p-value as the area under the probability density function of the $F_{K,N+1-N_2-2K}$ distribution to the right of the calculated F-test statistic of 2.662815. The calculation is done with the DISTRIBUT command (described in the chapter PROBABILITY DISTRIBUTIONS). On the SHAZAM output this area is listed in the column marked 1-CDF. The reported p-value of .099796 suggests that the null hypothesis can be rejected at the 10% level but not at the 5% level.

Note that the DIAGNOS command (see the chapter DIAGNOSTIC TESTS) automatically computes Chow test statistics. The above result can be obtained with the commands:

```
ols consume income price
diagnos / chowone=9
```

The CHOWONE= option on the DIAGNOS command specifies the number of observations in the first group.

Labelling Residual Output with the IDVAR= option

The commands below show the use of the IDVAR= option on the OLS command. The variables are the unemployment and vacancy rates for some provinces of Canada for January 1976 (the data set was illustrated in the chapter DATA INPUT AND OUTPUT).

```
sample 1 9
```
format(2a8,2f5.1)

read prov1 prov2 ur vr / format

Newfoundland 14.9 4.0
Nova Scotia 9.1 5.0
New Brunswick 12.2 7.0
Quebec 9.1 6.0
Ontario 7.1 5.0
Manitoba 6.7 8.0
Saskatchewan 4.8 8.0
Alberta 5.3 11.0
British Columbia 10.0 4.0

ols ur vr / idvar=prov1 list wide

A selected portion of the OLS estimation output is:

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>OBSERVED VALUE</th>
<th>PREDICTED VALUE</th>
<th>CALCULATED RESIDUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Newfound</td>
<td>14.900</td>
<td>11.087</td>
<td>3.8132</td>
</tr>
<tr>
<td>2 Nova Sco</td>
<td>9.1000</td>
<td>10.151</td>
<td>-1.0513</td>
</tr>
<tr>
<td>3 New Brun</td>
<td>12.200</td>
<td>8.2803</td>
<td>3.9197</td>
</tr>
<tr>
<td>4 Quebec</td>
<td>9.1000</td>
<td>9.2158</td>
<td>-0.11579</td>
</tr>
<tr>
<td>5 Ontario</td>
<td>7.1000</td>
<td>10.151</td>
<td>-3.0513</td>
</tr>
<tr>
<td>6 Manitoba</td>
<td>6.7000</td>
<td>7.3447</td>
<td>-0.64474</td>
</tr>
<tr>
<td>7 Saskatch</td>
<td>4.8000</td>
<td>7.3447</td>
<td>-2.5447</td>
</tr>
<tr>
<td>8 Alberta</td>
<td>5.3000</td>
<td>4.5382</td>
<td>0.76184</td>
</tr>
<tr>
<td>9 British</td>
<td>10.000</td>
<td>11.087</td>
<td>-1.0868</td>
</tr>
</tbody>
</table>

RESTRICTED LEAST SQUARES

The general command format for restricted least squares is:

OLS depvar indeps / RESTRICT options

RESTRICT equation1

RESTRICT equation2

...
The RESTRICT option informs SHAZAM that RESTRICT commands are to follow. More than one is allowed provided each is typed on a separate line. The equation is a linear function of the variables (that represent coefficients) involved in the estimation. NOTE: The restrictions must be a linear function of the coefficients. The END command marks the end of the list of RESTRICT commands and is required. Each restriction will add one degree of freedom.

Consider estimating the model $Y = X\beta + \epsilon$ subject to the restrictions $R\beta = r$ where R is a known matrix and r is a known vector. The restricted least squares estimator is:

$$\hat{\beta}_r = \hat{\beta} + (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(r - R\hat{\beta})$$

where $\hat{\beta} = (X'X)^{-1}X'Y$

The covariance matrix of the restricted estimator is estimated as:

$$V(\hat{\beta}_r) = \sigma^2(X'X)^{-1} - \sigma^2(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}$$

The R^2 measure is calculated as:

$$1 - \frac{e'e}{Y'Y - NY^2}$$

where e are the residuals from the restricted estimation. Note that this formula is not bounded at zero.

An example of the use of the RESTRICT option on the OLS command and RESTRICT commands is shown with Theil’s textile data:

```shazam
ols consume income price / restrict
restrict income+price=0
end
```

The SHAZAM output is:

```
| OLS CONSUME INCOME PRICE / RESTRICT
OLS ESTIMATION
17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO: 1, 17
|_RESTRICT INCOME+PRICE=0
|_END
F TEST ON RESTRICTIONS= 1.4715 WITH 1 AND 14 DF
```
Ordinary Least Squares

\[R^2 = 0.9462 \quad R^2 \text{ ADJUSTED} = 0.9426 \]

Variance of the Estimate: \(\sigma^2 = 31.924 \)

Standard Error of the Estimate: \(\sigma = 5.6501 \)

Sum of Squared Errors-SSE = 478.86

Mean of Dependent Variable = 134.51

Log of the Likelihood Function = -52.4966

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>DF</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT</th>
<th>ELASTICITY AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>1.3691</td>
<td>.8433E-01</td>
<td>16.24</td>
<td>15</td>
<td>.000</td>
<td>.973</td>
<td>.3078</td>
</tr>
<tr>
<td>PRICE</td>
<td>-1.3691</td>
<td>.8433E-01</td>
<td>-16.24</td>
<td>15</td>
<td>.000</td>
<td>-.973</td>
<td>-.9794</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>97.991</td>
<td>2.634</td>
<td>37.21</td>
<td>15</td>
<td>.000</td>
<td>.995</td>
<td>.7285</td>
</tr>
</tbody>
</table>

An example of estimating equations with restrictions in a system of equations is shown in the chapter **Two-Stage Least Squares and Systems of Equations**.

Weighted Regression

Weighted regression has a number of applications and can be implemented in SHAZAM with the WEIGHT= option on the OLS command. One application is as a correction for heteroskedasticity. A second application is for replicated data that may be produced from a sample survey. First consider the regression model with heteroskedastic disturbances stated as:

\[Y_t = X_t' \beta + \varepsilon_t \quad \text{with} \quad E(\varepsilon_t^2) = \sigma^2 / W_t \quad \text{for} \ t = 1, \ldots, N \]

and \(Y_t, X_t \) and \(W_t \) are observed and the unknown parameters are \(\beta \) and \(\sigma^2 \). The values for \(W_t \) are specified in the WEIGHT= variable. SHAZAM normalizes the weights to sum to the number of observations. Each observation of the dependent and explanatory variables is multiplied by the square root of the normalized weight variable and the weighted least squares estimate \(\hat{\beta}_w \) is then obtained by applying OLS to the transformed model:

\[\sqrt{W_t} Y_t / \sqrt{W} = \sqrt{W_t} X_t' \beta + \sqrt{W_t} v_t \quad \text{where} \quad \sqrt{W} = 1 / N \sum_{t=1}^{N} W_t \]

The weighted residuals (that can be saved with the RESID= option) are calculated as:

\[\hat{v}_t = \sqrt{W_t} / \sqrt{W} (Y_t - X_t' \hat{\beta}_w) \]

The residual variance (reported as SIGMA**2 on the SHAZAM output) is estimated as:
If the DN option is used the divisor is N instead of N–K. The log-likelihood function is evaluated as:

\[- \frac{N}{2} \ln (2\pi \hat{\sigma}^2) - \frac{N}{2} + \frac{1}{2} \sum_{t=1}^{N} \log(\left| W_t / \bar{W} \right|) \]

where

\[\hat{\sigma}^2 = \frac{1}{N} \sum_{t=1}^{N} (\hat{v}_t)^2 \]

An example, with the Theil textile data set, of applying weighted least squares to the heteroskedastic error model follows. The assumption is that the error variance is directly related to the PRICE variable. The SHAZAM output is:

```shazam
| _GENR PW=1/PRICE
| _OLS CONSUME INCOME PRICE / WEIGHT=PW
OLS ESTIMATION
   17 OBSERVATIONS   DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO:   1,   17
SUM OF LOG(SQRT(ABS(WEIGHT)))  =  - .19396
R-SQUARE =  .9426   R-SQUARE ADJUSTED =  .9344
VARIANCE OF THE ESTIMATE-SIGMA**2 =  33.810
STANDARD ERROR OF THE ESTIMATE-SIGMA =  5.8146
SUM OF SQUARED ERRORS-SSE=  473.34
MEAN OF DEPENDENT VARIABLE =  138.98
LOG OF THE LIKELIHOOD FUNCTION =  -52.5920

VARIABLE  ESTIMATED  STANDARD  T-RATIO  PARTIAL STANDARDIZED ELASTICITY
  NAME    COEFFICIENT  ERROR  14 DF   P-VALUE  CORR. COEFFICIENT  AT MEANS
INCOME  1.1543     .2922   3.950  .001   .726       .2626       .8529
PRICE  -1.4060    .9272E-01 -15.16  .000  -.971    -1.0080    -.7374
CONSTANT  122.92     28.96   4.244  .001   .750       .0000       .8845
```

Now consider an application to replicated data where each observation \(Y_t, X_t \) is replicated \(N_t \) times. The values for \(N_t \) are specified in the WEIGHT= variable. The weighted least squares estimate \(\hat{\beta}_w \) is obtained by applying OLS to the transformed model:

\[\sqrt{N_t} Y_t = \sqrt{N_t} X_t \hat{\beta} + v_t \]

When the REPLICATE option is used the residuals are calculated as the untransformed residuals:

\[e_t = Y_t - X_t \hat{\beta}_w \]
When the **NONORM** option is used the residual variance (reported as **SIGMA**\(^2\) on the SHAZAM output) is estimated as:

\[
\frac{1}{\sum_{t=1}^{N} N_t} \sum_{t=1}^{N} N_t e_t^2
\]

DETECTING INFLUENTIAL OBSERVATIONS

SHAZAM output from the **OLS** command with the **INFLUENCE** option is:

<table>
<thead>
<tr>
<th>OLS CONSUME INCOME PRICE / INFLUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS ESTIMATION</td>
</tr>
<tr>
<td>17 OBSERVATIONS</td>
</tr>
<tr>
<td>DEPENDENT VARIABLE = CONSUME</td>
</tr>
<tr>
<td>...NOTE...SAMPLE RANGE SET TO: 1, 17</td>
</tr>
<tr>
<td>R-SQUARE = .9513</td>
</tr>
<tr>
<td>R-SQUARE ADJUSTED = .9443</td>
</tr>
<tr>
<td>VARIANCE OF THE ESTIMATE-SIGMA = 30.951</td>
</tr>
<tr>
<td>SUM OF SQUARED ERRORS-SSE = 433.31</td>
</tr>
<tr>
<td>MEAN OF DEPENDENT VARIABLE = 134.51</td>
</tr>
<tr>
<td>LOG OF THE LIKELIHOOD FUNCTION = -51.6471</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>1.0617</td>
<td>.2667</td>
<td>3.981</td>
<td>.001</td>
<td>.729</td>
</tr>
<tr>
<td>PRICE</td>
<td>-1.3830</td>
<td>.8381E-01</td>
<td>-16.50</td>
<td>.000</td>
<td>-.975</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>130.71</td>
<td>27.09</td>
<td>4.824</td>
<td>.000</td>
<td>.9718</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESIDUAL</th>
<th>RSTUDENT</th>
<th>HT</th>
<th>COVRAT</th>
<th>DFFITS</th>
<th>DFFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5076</td>
<td>1.2294</td>
<td>.3279</td>
<td>1.336</td>
<td>.8588</td>
</tr>
<tr>
<td>2</td>
<td>2.5765</td>
<td>.5287</td>
<td>.2720</td>
<td>1.6096</td>
<td>.3232</td>
</tr>
<tr>
<td>3</td>
<td>1.4210</td>
<td>.2804</td>
<td>.2249</td>
<td>1.5824</td>
<td>.1510</td>
</tr>
<tr>
<td>4</td>
<td>-5.1814</td>
<td>-.9842</td>
<td>.1065</td>
<td>1.1268</td>
<td>-.3399</td>
</tr>
<tr>
<td>5</td>
<td>-2.5169</td>
<td>-.0456</td>
<td>.0858</td>
<td>1.3655</td>
<td>-.0140</td>
</tr>
<tr>
<td>6</td>
<td>-5.3100</td>
<td>-1.0548</td>
<td>.1746</td>
<td>1.1827</td>
<td>-.4851</td>
</tr>
<tr>
<td>7</td>
<td>-1.9455</td>
<td>-.3829</td>
<td>.2167</td>
<td>1.5418</td>
<td>-.2014</td>
</tr>
<tr>
<td>8</td>
<td>.57462</td>
<td>.1152</td>
<td>.2522</td>
<td>1.6652</td>
<td>.0669</td>
</tr>
<tr>
<td>9</td>
<td>4.3958</td>
<td>.8588</td>
<td>.1694</td>
<td>1.2743</td>
<td>.3879</td>
</tr>
<tr>
<td>10</td>
<td>1.5426</td>
<td>.2833</td>
<td>.1047</td>
<td>1.3696</td>
<td>.0969</td>
</tr>
<tr>
<td>11</td>
<td>4.5946</td>
<td>.8670</td>
<td>.1088</td>
<td>1.1839</td>
<td>.3029</td>
</tr>
<tr>
<td>12</td>
<td>-4.9571</td>
<td>-1.0007</td>
<td>.2072</td>
<td>1.2609</td>
<td>-.5116</td>
</tr>
<tr>
<td>13</td>
<td>-8.8975</td>
<td>-1.9206</td>
<td>.1734</td>
<td>.7142</td>
<td>-.8798</td>
</tr>
<tr>
<td>14</td>
<td>6.4156</td>
<td>1.3427</td>
<td>.2200</td>
<td>1.0846</td>
<td>.7131</td>
</tr>
<tr>
<td>15</td>
<td>-2.5614</td>
<td>-.4770</td>
<td>.1197</td>
<td>1.3469</td>
<td>-.1759</td>
</tr>
<tr>
<td>16</td>
<td>-7.2886</td>
<td>-1.4519</td>
<td>.1214</td>
<td>.9056</td>
<td>-.5396</td>
</tr>
<tr>
<td>17</td>
<td>9.3650</td>
<td>1.9629</td>
<td>.1147</td>
<td>.6475</td>
<td>.7064</td>
</tr>
</tbody>
</table>

The **HT** values are defined as the diagonal values of the Hat matrix (described in Belsley, Kuh, and Welsch [1980, Equations 2.2 and 2.15]) as:

\[
h = \text{DIAG} \left(X(X'X)^{-1}X'\right)
\]
where DIAG() takes the diagonal of the matrix (the \texttt{HATDIAG=} option can be used to save the diagonal). The \texttt{DFFIT} values measure the effect of the coefficient change and measure the change in fit due to a deletion of one observation. Denote \(X(t)\) as the observation matrix with row \(t\) deleted and \(b(t)\) as the estimate obtained with this matrix. Then:

\[
\text{DFFIT}_t = \hat{Y}_t - \hat{Y}_t(t) = X(t) \left[\hat{\beta} - b(t) \right] = \frac{h_t e_t}{1 - h_t},
\]

where \(\hat{Y}(t) = X(t)b(t)\) and

\[
\text{DFFITS}_t = \left[\frac{h_t}{1 - h_t} \right]^{1/2} \frac{e_t}{\hat{\sigma}(t)\sqrt{1 - h_t}} \quad \text{where} \quad \hat{\sigma}^2(t) = \frac{1}{N-K-1} \sum_{k \neq t} [Y_k - X'_{k}b(t)]^2
\]

For further reference on these statistics see Belsley, Kuh, and Welsch [1980, Equations 2.10 and 2.11].

The \texttt{RSTUDENT} values are the Studentized Residuals as described in Belsley, Kuh, and Welsch [1980, Equation 2.26]:

\[
e_t^* = \frac{e_t}{\hat{\sigma}(t)\sqrt{1 - h_t}}
\]

The \texttt{COVRAT} statistic is defined as:

\[
\text{COVRAT}_t = \frac{\hat{\sigma}(t)^{2K}}{\hat{\sigma}^{2K}} \left\{ \frac{\det [X'(t)X(t)]^{-1}}{\det (X'X)^{-1}} \right\}
\]

and compares the covariance matrices \(\hat{\sigma}^2(X'X)^{-1}\) and \(\hat{\sigma}^2(t)[X'(t)X(t)]^{-1}\) as described in Belsley et al. [1980, Equation 2.36].

If the \texttt{DFBETAS} option is specified the SHAZAM output is:

<table>
<thead>
<tr>
<th>OLS CONSUME INCOME PRICE / DFBETAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS ESTIMATION</td>
</tr>
<tr>
<td>17 OBSERVATIONS</td>
</tr>
<tr>
<td>DEPENDENT VARIABLE = CONSUME</td>
</tr>
<tr>
<td>...NOTE.SAMPLE RANGE SET TO: 1, 17</td>
</tr>
<tr>
<td>R-SQUARE = .9513</td>
</tr>
<tr>
<td>R-SQUARE ADJUSTED = .9443</td>
</tr>
<tr>
<td>VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951</td>
</tr>
<tr>
<td>STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634</td>
</tr>
<tr>
<td>SUM OF SQUARED ERRORS-SSE= 433.31</td>
</tr>
<tr>
<td>MEAN OF DEPENDENT VARIABLE = 134.51</td>
</tr>
<tr>
<td>LOG OF THE LIKELIHOOD FUNCTION = -51.6471</td>
</tr>
<tr>
<td>VARIABLE</td>
</tr>
<tr>
<td>NAME</td>
</tr>
</tbody>
</table>
The **DFBETAS** statistic yields a scaled measure of the change on the estimated regression coefficients when row t is deleted (see Belsley et al. [1980, Equation 2.7]).

\[
\text{DFBETAS}_{tj} = \frac{\hat{\beta}_j - b_j(t)}{\hat{\sigma}(t) \sqrt{(X'X)^{-1}_{jj}}} \quad \text{for } j = 1, \ldots, K
\]

The **DFBETAS** statistic yields a scaled measure of the change on the estimated regression coefficients when row t is deleted (see Belsley et al. [1980, Equation 2.7]). Another statistic not listed on the SHAZAM output is:

\[
\text{DFBETA}_t = \hat{\beta} - b(t) = (X'X)^{-1}X_t e_t / (1 - h_t)
\]

This statistic measures the effect of deleting row t on the estimated regression coefficients (see Belsley et al. [1980, Equation 2.1]).
Stepwise regression is not widely used in econometrics because most economists use economic theory to determine which variables belong in the model. However it is available for those who think a computer algorithm is smart enough to replace economic theory. For stepwise regression, a slight modification of the OLS command is required. The format of the OLS command is:

\[
\text{OLS depvar indeps (stepvars) / options}
\]

where `depvar` is the name of the dependent variable, `indeps` (if present) are the names of the independent variables that are always forced into the equation, `stepvars` are the names of the variables that may be stepped into the equation, and `options` are the desired options. (See the `FE=`, `FX=`, `PE=`, `PX=` options described above.) The `DWPVALUE`, `HETCOV`, `RESTRICT` and `RIDGE=` options may not be used when stepwise regressions are being run. Stepwise regression automatically uses `METHOD=NORMAL`.

\[
\begin{array}{|cccc|}
\hline
\text{STEP} & \text{VARIABLE} & \text{STATUS} & \text{F-VALUE} \\
\hline
1 & \text{PRICE} & \text{STEPPED IN} & 129.4014 \\
2 & \text{INCOME} & \text{STEPPED IN} & 15.8508 \\
3 & \text{YEAR} & \text{IF ENTERED} & .3869 \\
\hline
\end{array}
\]

R-SQUARE = .9513 R-SQUARE ADJUSTED = .9443
VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951
STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634
SUM OF SQUARED ERRORS-SSE = 433.31
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -51.6471

\[
\begin{array}{|cccccccc|}
\hline
\text{VARIABLE} & \text{ESTIMATED} & \text{STANDARD} & \text{T-RATIO} & \text{PARTIAL STANDARDIZED ELASTICITY} \\
\text{NAME} & \text{COEFFICIENT} & \text{ERROR} & 14 \text{ DF} & \text{P-VALUE} & \text{CORR. COEFFICIENT} & \text{AT MEANS} \\
\hline
\text{INCOME} & 1.0617 & .2667 & 3.981 & .001 & .729 & .2387 & .8129 \\
\text{PRICE} & -1.3830 & .8381E-01 & -16.50 & .000 & -.975 & -.9893 & -.7846 \\
\text{CONSTANT} & 130.71 & 27.09 & 4.824 & .000 & .790 & .0000 & .9718 \\
\hline
\end{array}
\]
8. HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

"God Himself could not sink this ship."
Titanic deckhand
April 10, 1912

The TEST command in SHAZAM can be used for linear or nonlinear hypothesis testing on regression coefficients after model estimation. The CONFID command can be used to compute confidence intervals and a confidence ellipse for two coefficients. Several TEST or CONFID commands can follow an estimation command. A discussion of hypothesis testing and interval estimation can be found in a good econometrics textbook.

HYPOTHESIS TESTING

The TEST command follows an estimation command and the general format is:

```
estimation command
TEST equation
```

where equation is an equation made up of combinations of the variables involved in the estimation and represents the hypothesis to be tested. The equation must not contain logical relations such as .EQ., .NE., .LT., etc. (Note that to estimate models with inequality restrictions see the features in the chapter INEQUALITY RESTRICTIONS.) The equation may only include a variable in the estimated equation or one that has been previously generated with a GEN1 or GENR command. Each single hypothesis must be placed on a separate TEST command.

If a joint test is required that involves several hypotheses, these should be grouped together with a blank TEST command to introduce them and an END command to mark the end of the group. The general command format for a joint hypothesis test is:

```
TEST
TEST equation 1
TEST equation 2
...
END
```
The **TEST** command calculates t, F, and chi-square test statistics. The appropriate test statistic to use depends on the form of the hypothesis. For example, when the hypothesis specified on the **TEST** command involves non-linear functions of the coefficients then the Wald chi-square statistic is generally used.

An example of hypothesis testing after OLS estimation is given in the next list of SHAZAM commands.

```
stat consume / mean=cbar
stat income / mean=ibar
ols consume income price
test income=1
test income*(ibar/cbar)
test income=1
test price=-1
end
test income*price=-1
```

The Theil textile demand data set is analyzed. The first **TEST** command tests the hypothesis that the coefficient on `INCOME` is equal to one. The second **TEST** command computes a standard error for the income elasticity. Note that the equation does not have an `=` sign. This **TEST** command calculates a value for the function of the coefficients on the variables and then computes a standard error. The third **TEST** command initiates a joint hypothesis test. The final **TEST** command is an example of a non-linear hypothesis and the test statistics computed give a test for the hypothesis that the coefficient on `INCOME` multiplied by the coefficient on `PRICE` is equal to \(-1\). SHAZAM output from the above **TEST** commands is included in the discussion that follows in this chapter.

If the **TEST** command follows non-linear estimation with the **NL** command then *equation* is an equation made up of combinations of the coefficients involved in the estimation. The next list of SHAZAM commands shows how to test hypotheses following nonlinear estimation with the **NL** command (see the chapter *NONLINEAR REGRESSION*). The commands estimate a CES production function with the variables `LOGQ`, `L` and `K`. The coefficients to estimate are `B1`, `B2`, `B3`, and `B4`. The **TEST** command specifies a test for \(H_0 : B3 = -1\).

```
nl 1 / ncoef=4
eq logq=b1 + b4 * log ( b2*1**b3 + (1-b2)*k**b3)
coef b1 .5 b2 .5 b3 -3 b4 -1
end
test b3=-1
```

For instructions on doing hypothesis testing on systems of equations, see the chapter *TWO STAGE LEAST SQUARES AND SYSTEMS OF EQUATIONS*.
Temporary variables available following a **TEST** command are:

- CHI : Wald chi-square statistic
- $DF1, DF2$: Numerator and denominator degrees of freedom for the F distribution
- ERR : Error code
- F : F statistic

When a single hypothesis test is specified the temporary variables available are:

- DF : Degrees of freedom for the t distribution
- $STES$: Standard error of test value
- T : t statistic
- VAL : test value

When a joint test with exactly two **TEST** commands is used the temporary variables $VAL1, VAL2, CT11, CT22, CT12$ store values used to construct the test statistic (discussed later in this chapter). For more information on temporary variables see the chapter **MISCELLANEOUS COMMANDS AND INFORMATION**.

Testing a Single Linear Combination of Coefficients

Consider testing $H_0 : R_1 \beta = r$ where R_1 is a known $(1 \times K)$ row vector and r is a known scalar. The simplest case is a hypothesis involving a single coefficient of the form $H_0 : \beta_k = r$ (that is, R_1 has a 1 in element k and 0’s for all other elements). The test statistic is:

$$ t = \frac{R_1 \hat{\beta} - r}{\sqrt{R_1 V(\hat{\beta}) R_1'}} $$

where $V(\hat{\beta})$ is the $(K \times K)$ estimated variance-covariance matrix of $\hat{\beta}$.

On the SHAZAM output the numerator is reported as the **TEST VALUE** and the denominator is reported as the **STD. ERROR OF TEST VALUE**. Under the assumption that $H_0 : R_1 \beta = r$ is true and with normally distributed errors the test statistic can be compared with a t-distribution with $(N-K)$ degrees of freedom.

SHAZAM output from a **TEST** command is given below. The null hypothesis is that the coefficient on the variable **INCOME** is equal to 1.
The SHAZAM output reports a p-value for a two-tailed test. In this example:

\[p-value = \Pr[t_{(14)} < -0.2314 \text{ and } t_{(14)} > 0.2314] = 2(1 - \Pr[t_{(14)} < 0.2314]) = 0.82035. \]

The calculated p-value exceeds any standard significance level (such as 0.10 or 0.05) and so there is no evidence to reject the null hypothesis that the coefficient on \textit{INCOME} is equal to one.

In the case of a single linear hypothesis the test statistic values satisfy:

\[t^2 = F \text{ statistic} = \text{Wald chi-square statistic}. \]

Now consider calculating a standard error for an elasticity. With a linear regression equation an elasticity of the dependent variable with respect to the \(k \)th explanatory variable can be estimated as:

\[E_k = \hat{\beta}_k \frac{\bar{X}_k}{\bar{Y}} \]

where \(\hat{\beta}_k \) is the estimated coefficient and \(\bar{X}_k \) is the sample mean of variable \(k \), and \(\bar{Y} \) is the mean of the dependent variable. The SHAZAM OLS estimation output reports this value in the column labelled \textit{ELASTICITY AT MEANS}. However, it may also be of interest to compute a standard error for this statistic. The standard error can be estimated as:

\[\sqrt{V(\hat{\beta}_k)(\bar{X}_k/\bar{Y})^2} \]

An example of the use of the \textbf{TEST} command to do this calculation is given below. With the Theil textile demand equation the standard error of the elasticity of consumption with respect to income is reported as the \textit{TEST VALUE}. The \textit{T STATISTIC} gives a test for the null hypothesis that the income elasticity is equal to zero.
Testing More Than One Linear Combination of Coefficients

A general linear hypothesis can be expressed as \(H_0 : R\beta = r \) where \(R \) is a known \((q \times K)\) matrix and \(r \) is a \((q \times 1)\) column vector. The test statistic is:

\[
F = \frac{1}{q} (R\hat{\beta} - r)' [RV(\hat{\beta})R']^{-1} (R\hat{\beta} - r)
\]

When the null hypothesis is true the F-statistic has an F-distribution with \((q, N-K)\) degrees of freedom. For \(q=2 \), the temporary variables $VAL1, $VAL2 store the elements of \(R\hat{\beta} - r \) and $CT11, $CT22, $CT12 store the elements of the matrix \(RV(\hat{\beta})R' \).

With the Theil textile demand equation consider testing the joint hypothesis that the coefficients on \(\text{INCOME} (\beta_1) \) and \(\text{PRICE} (\beta_2) \) are 1 and \(-1\) respectively. The intercept parameter is \(\beta_3 \). In matrix notation this can be written as:

\[
H_0 : \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

The next SHAZAM output shows the results from the `TEST` command.

```
|_TEST
|_ TEST INCOME=1
|_ TEST PRICE=-1
|_END
F STATISTIC = 10.617226 WITH 2 AND 14 D.F. P-VALUE= .00156
WALD CHI-SQUARE STATISTIC = 21.234451 WITH 2 D.F. P-VALUE= .00002
UPPER BOUND ON P-VALUE BY CHEBYCHEV INEQUALITY = .09419
```

The F test statistic is 10.617226. By consulting statistical tables it is found that the 5% critical value for \(F(2,14) \) is 3.74. The test statistic exceeds the critical value and so the conclusion is that the hypothesis is not supported by the data. The reported p-value of 0.00156 suggests that the null hypothesis is rejected even at a 1% significance level.

Note that in general the Wald chi-square statistic is equivalent to the F statistic multiplied by the number of hypotheses \(q \) and is distributed \(\chi^2 \) with \(q \) degrees of freedom.
Testing Non-Linear Functions of Coefficients

Non-linear hypotheses can be stated in the general form \(H_0 : h(\beta) = 0 \) where \(h(\beta) \) is a set of \(q \) non-linear functions of the model parameters. The \((q \times K)\) matrix of partial derivatives is:

\[
G = \frac{\partial h(\beta)}{\partial \beta}
\]

The \(j^{\text{th}} \) row of \(G \) is a vector of partial derivatives of the \(j^{\text{th}} \) function with respect to \(\beta \). The Wald test statistic is:

\[
\text{Wald} = h(\hat{\beta})\left[\hat{G}V\hat{G}' \right]^{-1} \hat{G}h(\hat{\beta})
\]

where \(\hat{G} \) is the matrix \(G \) evaluated at \(\beta = \hat{\beta} \). When the null hypothesis is true the Wald statistic has an asymptotic chi-square distribution with \(q \) degrees of freedom. When \(q=1 \) then \(t = \sqrt{\text{Wald}} \) has an asymptotic standard normal distribution under the null hypothesis.

Users should be aware that the value of the test statistic for a non-linear hypothesis is sensitive to the form of the equation (see Gregory and Veall [1985] and Lafontaine and White [1986]). Since the small sample distributions of non-linear test statistics are not known, the statistics reported as \(t, F, \) and Wald chi-square should be interpreted with caution.

SHAZAM uses analytical derivatives for the computation of the Wald test statistic. The nonlinear hypothesis specified on the `TEST` command can contain the functions `LOG()` and `EXP()`. Other functions are not allowed. If a hypothesis with a square root function of coefficients is required then write the function in the form `(expression)**.5` and not `SQRT(expression)`.

The next SHAZAM output shows the results of a test of the non-linear hypothesis that the product of two coefficients is equal to \(-1\).

```
<table>
<thead>
<tr>
<th>TEST INCOME*PRICE=-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST VALUE = - .46833</td>
</tr>
<tr>
<td>STD. ERROR OF TEST VALUE = .39456</td>
</tr>
<tr>
<td>T STATISTIC = - 1.1869717</td>
</tr>
<tr>
<td>WITH 14 D.F.</td>
</tr>
<tr>
<td>P-VALUE = .25499</td>
</tr>
<tr>
<td>F STATISTIC = 1.4089019</td>
</tr>
<tr>
<td>WITH 1 AND 14 D.F.</td>
</tr>
<tr>
<td>P-VALUE = .25499</td>
</tr>
<tr>
<td>WALD CHI-SQUARE STATISTIC = 1.4089019</td>
</tr>
<tr>
<td>WITH 1 D.F.</td>
</tr>
<tr>
<td>P-VALUE = .23524</td>
</tr>
<tr>
<td>UPPER BOUND ON P-VALUE BY CHEBYCHEV INEQUALITY = .70977</td>
</tr>
</tbody>
</table>
```
The Chebychev Inequality

A summary of the distributions of test statistics is given in the table:

<table>
<thead>
<tr>
<th></th>
<th>Linear Model</th>
<th>Non-linear Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Hypothesis</td>
<td>$Y = X\beta + \varepsilon$</td>
<td>$Y = f(X,\beta) + \varepsilon$</td>
</tr>
<tr>
<td>H_0: $R\beta = r$</td>
<td>$t_{(N-K)}$ for $q=1$,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{(q,N-K)}$ for $q>1$</td>
<td>asymptotic $N(0,1)$ for $q=1$,</td>
</tr>
<tr>
<td></td>
<td>asymptotic $\chi^2_{(q)}$ for $q>1$</td>
<td>asymptotic $\chi^2_{(q)}$ for $q>1$</td>
</tr>
</tbody>
</table>

| **Non-linear Hypothesis** | asymptotic $N(0,1)$ for $q=1$, |
| H_0: $h(\beta) = 0$ | asymptotic $\chi^2_{(q)}$ for $q>1$ |

In cases other than testing linear hypotheses of coefficients from the linear regression model the small sample distributions of the test statistics are unknown. We need to depend on the asymptotic distributions which are valid only in large samples. When applied to small samples the only probability known with certainty is the upper bound obtained from the Chebychev inequality.

For a random variable Z with zero mean and unit variance the univariate Chebychev inequality may be written:

$$\text{Pr}[|Z| > D] \leq \frac{1}{D^2}$$

where D is a positive constant. This gives an upper bound on the probability of $1/D^2$. For a t test statistic, in a circumstance in which we are uncertain if a t distribution is appropriate, an upper bound for the p-value is: $1/t^2$ (the maximum is 1.0).

For a sequence $\{Z_n\}$ for $n = 1, \ldots, q$ the multivariate Chebychev inequality states:

$$\text{Pr}[g(Z_n) > D] \leq \frac{q}{D}$$

where $g()$ is any non-negative continuous function. For a discussion, see Dhrymes [1978, pp. 382-384]. This result allows the computation of an upper bound for the p-value of a chi-square test statistic obtained from a joint hypothesis test.

The SHAZAM output below shows the results of a joint hypothesis test involving a non-linear function of the coefficients.
The calculated chi-square statistic is 21.316256 and the reported p-value is 0.00002. This suggests rejection of the null hypothesis. But, with a small sample, we may be reluctant to rely on the asymptotic chi-square distribution. The Chebychev inequality yields an upper bound on the p-value as $\frac{2}{21.316256} = 0.09383$. Therefore, the null hypothesis is not rejected at a 5% level, but there is evidence to reject at a 10% level.

CONFIDENCE INTERVALS

The **CONFID** command computes confidence intervals. In general, the format of the CONFID command is:

```
estimation command
CONFID var1 var2 ... / options
```

where `var1` and `var2` are variable names and `options` is a list of available options. When the CONFID command follows a STAT command confidence intervals are estimated for the population means of the variables. When the CONFID command follows regression estimation confidence intervals are estimated for the regression coefficients of the variables. Following a NL command the CONFID command must specify the names of the coefficients involved in the estimation.

Options available on the CONFID command are:

NORMAL

Specifies that the normal distribution rather than the t distribution should be used in computing confidence regions. Often, we only know that the coefficients are asymptotically normally distributed and the use of the t or F distribution would be inappropriate.

DF=

Specifies the degrees of freedom to use for obtaining 5% and 10% critical values from the t-distribution. The default setting is the degrees of freedom from the previous estimation command.

TCRIT=

Specifies the t-distribution critical value for calculating confidence intervals. This value can be obtained from tables of the t-distribution or
from output associated with use of the DISTRIB command. If this option is not specified then SHAZAM computes the critical values for 90% and 95% confidence intervals. An example of the use of the TCRIT= option is given later in this chapter.

When only 2 coefficients are listed, the CONFID command will also compute a plot of the confidence ellipse. The available PLOT options (see the chapter PLOTS AND GRAPHS) are:

HOLD, NOBLANK, NOWIDE, SYMBOL, WIDE, XMAX=, XMIN=, YMAX= and YMIN=.

Other options available on the CONFID command are:

GRAPH Prepares a gnuplot plot of the joint confidence region when 2 coefficients are specified. For more information on this option see the chapter PLOTS AND GRAPHS. With the GRAPH option the APPEND, AXIS, NOAXIS, COMMFILE=, DEVICE=, OUTPUT= and PORT= options are also available as described for the GRAPH command.

NOFPLOT Omits the joint confidence region plot when two coefficients are specified. This option would be used if you only wanted the individual confidence intervals for the coefficients.

NOMID Omits the display of a symbol at the center of the confidence ellipse.

NOTPLOT Omits the computation of the confidence intervals for individual coefficients. This might be used if only two coefficients were specified and you only want the joint confidence region plot (FPLOT). Normally, the individual confidence intervals are shown on the joint plot with a plus symbol (+) to show the outline of the confidence rectangle. The NOTPLOT option will suppress the drawing of the (+) symbol.

DF= Specifies the degrees of freedom to use for obtaining 5% and 10% critical values from the t-distribution. With 2 coefficients this will be the denominator degrees of freedom for obtaining a 5% critical value from the F-distribution. This option is also described above.

FCRIT= Specifies the critical value from an F-distribution to be used for the joint confidence region plot. This option is similar to the TCRIT= option described below and is usually used to complement it. If the FCRIT= option is not specified a 5% critical value will be used.
POINTS= SHAZAM usually constructs the confidence ellipse by evaluating the ellipse at approximately 200-205 points. The number used can be changed with this option if more or fewer points are desired to obtain a better looking plot.

In some cases, users would like to compute the confidence region for coefficients that have been estimated in an earlier run and do not wish to re-estimate a model. This is possible for any set of two coefficients where you tell SHAZAM the estimated values of the coefficients, their estimated variances, and the covariance between the coefficients. In this case, the CONFID command does not need to follow an estimation command, but the following options must be included:

COEF1= Specifies the coefficient estimate for the first coefficient you wish to plot. This coefficient will appear on the Y-axis of the plot.

COEF2= Specifies the coefficient estimate for the second coefficient you wish to plot. This coefficient will appear on the X-axis of the plot.

COVAR12= Specifies the estimated covariance between the two coefficients.

DF= Specifies the number of degrees of freedom. This is typically \(N - K \). This option is also described above.

VAR1= Specifies the estimated variance of the first coefficient.

VAR2= Specifies the estimated variance of the second coefficient.

Interval Estimation for a Population Mean

A 100\(\cdot (1 - \alpha)\)% confidence interval for a population mean is:

\[
\bar{X} \pm t_c \frac{\hat{\sigma}}{\sqrt{N}}
\]

where \(t_c \) is the \(\alpha/2 \) critical value from a t-distribution with \(N-1 \) degrees of freedom. SHAZAM sets values of \(t_c \) to give 95% and 90% confidence interval estimates.

The example below uses a sample of 6 observations on fuel consumption for cars from Example 8.4 in Newbold [1995, pp. 286-7]. The results show 95% and 90% interval estimates for the population mean fuel consumption.
Interval Estimation for a Single Regression Coefficient

A 100·(1 − α)% confidence interval for a coefficient β_k is:

$$\hat{\beta}_k \pm t_{c} \sqrt{V(\hat{\beta}_k)}$$

where t_{c} is the $\alpha/2$ critical value from a t-distribution with $(N-K)$ degrees of freedom. SHAZAM sets values of t_{c} to give 95% and 90% confidence interval estimates. However, other values for t_{c} can be specified with the `TCRIT=` option on the `CONFID` command.

The next output shows the use of the `CONFID` command to compute interval estimates for the coefficients of the Theil textile demand equation.
The 95% interval estimate for the coefficient on INCOME is:

\[
1.0617 \pm 2.145 \cdot 0.267 = [0.4897, 1.634]
\]

Interval Estimation for the Error Variance

An interval estimate for the error variance can be obtained by specifying the name $SIG2$ on the CONFID command. For example,

\[
\text{ols consume income price}
\]

\[
\text{confid $sig2$}
\]

A 100·(1 − α)% interval estimate for σ^2 is calculated as:

\[
\left[\frac{(N - K)\hat{\sigma}^2}{\chi^2_{N-K,\alpha/2}} , \frac{(N - K)\hat{\sigma}^2}{\chi^2_{N-K,1-\alpha/2}} \right]
\]

where $\chi^2_{N-K,\alpha/2}$ is the critical value from a chi-square distribution with $N-K$ degrees of freedom.

Estimation of a Joint Confidence Region for Two Regression Coefficients

Suppose β^* contains 2 coefficients from the β parameter vector and $V(\hat{\beta}^*)$ is a (2 x 2) sub-matrix of the full covariance matrix. A 100·(1 − α)% confidence ellipse for β^* is the set of values that satisfies:

\[
\frac{1}{2} (\hat{\beta}^* - \beta^*)' [V(\hat{\beta}^*)]^{-1} (\hat{\beta}^* - \beta^*) \leq F_c
\]

where F_c is the α critical value from a F-distribution with (2, N–K) degrees of freedom. The rectangle that is formed by the two individual confidence intervals each with probability 1–α gives a confidence region with probability $\geq 1-2\alpha$ (see Theil [1971, p. 132]). SHAZAM sets F_c to give a 95% confidence ellipse. Other values for F_c can be set with the FCRIT= option.

The next example shows the use of the CONFID command to obtain a joint confidence region for the coefficients on the INCOME and PRICE variables from the Theil textile
demand equation. Note that critical values are specified with the \texttt{TCRIT=} and \texttt{FCRIT=} options to give 99\% interval estimates and a 99\% confidence ellipse.

\begin{verbatim}
|_CONFID INCOME PRICE / TCRIT=2.977 FCRIT=6.51

CONFIDENCE INTERVALS BASED ON T-DISTRIBUTION WITH 14 D.F.
- T CRITICAL VALUE = 2.977
NAME LOWER COEFFICIENT UPPER STD. ERROR
INCOME .26782 1.0617 1.8556 .26667
PRICE -1.6325 -1.3830 -1.1335 .83814E-01

CONFIDENCE REGION PLOT FOR INCOME AND PRICE
USING F DISTRIBUTION WITH 2 AND 14 D.F. F-VALUE = 6.510

205 OBSERVATIONS
M=MULTIPLE POINT

2.4000 |
2.2737 |
2.1474 |
2.0211 |
1.8947 |
1.7684 |
1.6421 |
1.5158 |
1.3895 |
1.2632 |
1.1368 |
1.0105 |
.88421 |
.75789 |
.63158 |
.50526 |
.37895 |
.25263 |
.12632 |
.66613E-15 |

-1.800 -1.600 -1.400 -1.200 -1.000

205 OBSERVATIONS
M=MULTIPLE POINT

PRICE

The individual confidence intervals are shown on the above plot with a + symbol to show the outline of the confidence rectangle. The point estimate is displayed at the center of the confidence ellipse with the * symbol.

A GNUPLOT plot of the confidence ellipse can be obtained by specifying the \texttt{GRAPH} option on the \texttt{CONFID} command. This is illustrated by showing the use of the \texttt{CONFID} command after the \texttt{2SLS} command. The estimation is for the first equation of the Klein model (see the chapter \textit{TWO STAGE LEAST SQUARES AND SYSTEMS OF EQUATIONS}). Since the 2SLS estimated coefficients are assumed to be asymptotically normally distributed and the small sample properties are unknown, the \texttt{NORMAL} option is specified. The \texttt{NOAXIS} option specifies to omit the vertical and horizontal lines drawn at 0. The SHAZAM commands are as follows:
sample 1 21
2sls c plag p wgwp (wg t g time plag klag xlag) / dn
confid plag p / normal graph noaxis

The SHAZAM output from the CONFID command is:

```
| CONFID PLAG P / NORMAL GRAPH NOAXIS
USING 95% AND 90% CONFIDENCE INTERVALS

CONFIDENCE INTERVALS BASED ON NORMAL DISTRIBUTION WITH CRITICAL VALUES= 1.960 AND 1.645
NAME LOWER 2.5% LOWER 5% COEFFICIENT UPPER 5% UPPER 2.5% STD. ERROR
PLAG  .5989E-02  .3978E-01  .2162  .3927  .4265  .107
P   -.2141  -.1769  .1730E-01  .2115  .2487  .118

CONFIDENCE REGION PLOT FOR PLAG AND P USING CHI-SQUARE DISTRIBUTION WITH CRITICAL VALUE= 5.990
```

For the plot of the joint confidence region the point estimate in the center of the confidence ellipse is marked with the label "x".
9. INEQUALITY RESTRICTIONS

"However, inequality constrained linear regression is not an option of any of the more popular econometrics software packages. Many practitioners may lack the gall (if not the resources) to determine the solution using ordinary least squares regression packages."

John Geweke, 1986

The **BAYES** command provides a procedure for estimation with inequality restrictions. The methodology is described in Geweke [1986]; Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 20]; and Chalfant, Gray and White [1991]. The idea is to compute Bayes estimates as the mean of the truncated multivariate t posterior. Suppose that unrestricted estimation gives parameter estimates \(\hat{\beta} \) with a variance-covariance estimate \(V(\hat{\beta}) \). The method uses a Monte Carlo numerical integration procedure that is implemented by generating replications from a multivariate t distribution. At replication i draw the vector \(w_i \) from a \(N(0, V(\hat{\beta})) \) distribution and draw \(z_i \) from a \(\chi^2 \) distribution with \(v \) degrees freedom (for the linear regression model, \(v = N - K \)). Then compute the replication:

\[
\beta_i^A = \hat{\beta} + w_i / \sqrt{z_i^2 / v}
\]

The antithetic replication is computed as:

\[
\beta_i^B = \hat{\beta} - w_i / \sqrt{z_i^2 / v}
\]

The antithetic replication simply changes the sign to essentially give an additional replication at low cost and ensuring a symmetric distribution (see Geweke [1988] for further details). The inequality constrained estimates and standard errors are reported as the mean and standard deviation of the values that satisfy the inequality restrictions.

Suppose that \(R \) is the number of replications and \(s \) is the number that satisfy the restrictions. On the SHAZAM output the **PROPORTION** is computed as \(\hat{p} = s / R \) and this gives the probability that the restrictions are true. The **NUMERICAL STANDARD ERROR OF PROPORTION** (a standard error for numerical accuracy) is computed as \(\sqrt{\hat{p}(1 - \hat{p}) / R} \). The column with the label **NUMERICAL SE** is the standard deviation of the mean computed as the standard deviation divided by \(\sqrt{s} \).

The method is computer intensive and initial experimentation with relatively few replications is recommended. Different machines will yield different results due to the
machine differences in random number generation. The \texttt{SET RANFIX} command can be used to ensure the same set of random numbers in repeated runs.

BAYES COMMAND OPTIONS

In general, the format for estimation with inequality restrictions is:

\textit{estimation command}
\begin{verbatim}
BAYES / options NSAMP=
RESTRICT inequality restriction
\ldots
END
\end{verbatim}

where \textit{estimation command} is an estimation command such as \texttt{OLS} and \textit{options} is a list of options. \texttt{NSAMP=} is the number of replications. The \texttt{NSAMP=} option is required. The \texttt{BAYES} command is followed by \texttt{RESTRICT} commands that specify the inequality restrictions, and an \texttt{END} command. The inequality restrictions must use one of the operators .LT., .LE., .GT. or .GE.. The inequality restrictions can be linear or non-linear.

The available options on the \texttt{BAYES} command are:

- **NOANTITHET** Omits the \texttt{ANTITHETIC} replications.
- **NORMAL** Assumes the coefficients are normally distributed rather than \texttt{t} distributed.
- **PSIGMA** Prints the \texttt{ORIGINAL COVARIANCE MATRIX ESTIMATE} and the \texttt{NUMERICAL COVARIANCE MATRIX}. The latter is computed as:
 \[\frac{1}{R} \sum_{i=1}^{R} w_i w_i' \]
- **DF=** Specifies the degrees of freedom for the \texttt{t} distribution. The default setting is N–K.
- **NSAMP=** Specifies the number of replications. The \texttt{NSAMP=} option is required. This should be a small number (for example 100), while the user is experimenting. Readers of the Geweke article will realize that \texttt{NSAMP=} is often very high.
OUTUNIT= Specifies an output unit number to write all the replicated coefficients that satisfy the inequality restrictions. The output unit should be assigned with the SHAZAM FILE command. If NSAMP= is a large number the resulting file could be quite large.

EXAMPLES

Linear Regression with Inequality Restrictions

This example of the BAYES command uses the rental data set of Pindyck and Rubinfeld [1998, Table 2.1, p. 54] that is also analyzed in the Geweke [1986] article.

```plaintext
SAMPLE 1 32
READ RENT NO RM S DUM
5 VARIABLES AND 32 OBSERVATIONS STARTING AT OBS 1
GENR Y=RENT/NO
GENR R=RM/NO
GENR SR=S*R
GENR OSR=(1-S)*R
GENR SD=S*DUM
GENR OSD=(1-S)*DUM
* Estimation by OLS - results from column 1 of Geweke's Table ii.
OLS Y SR OSR SD OSD
OLS ESTIMAT
32 OBSERVATIONS  DEPENDENT VARIABLE = Y
...NOTE..SAMPLE RANGE SET TO: 1, 32
R-SQUARE = 0.4525 R-SQUARE ADJUSTED = 0.3713
VARIANCE OF THE ESTIMATE-SIGMA**2 = 1395.5
STANDARD ERROR OF THE ESTIMATE-SIGMA = 37.356
SUM OF SQUARED ERRORS-SSE= 37678.
MEAN OF DEPENDENT VARIABLE = 138.17
LOG OF THE LIKELIHOOD FUNCTION = -158.544

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR 27 DF P-VALUE CORR. COEFFICIENT AT MEANS
SR 103.55 38.47 2.692 0.012 0.460 1.0083 0.2264
OSR 122.04 37.36 3.267 0.003 0.532 1.1597 0.5290
SD 3.3151 1.961 1.690 0.102 0.309 0.3463 0.0555
OSD -1.1535 0.5714 -2.019 0.054-0.362 -0.3480 -0.0900
CONSTANT 38.562 32.22 1.197 0.242 0.224 0.0000 0.2791

* Now use Geweke's method to impose inequality restrictions.
* Use 1000 antithetic pairs (2000 replications).
* This gives results similar to column 3 of Geweke's table ii.
* Since random numbers are used, different results will be obtained
* in different runs and on different computers.
SET CPUTIME
BAYES / NSAMP=1000
BAYESIAN (GEWEKE) INEQUALITY CONSTRAINED ESTIMATION
RESTRICT SR.GT.0
RESTRICT OSR.GT.0
RESTRICT SD.LT.0
RESTRICT OSD.LT.0
```
NUMBER OF INEQUALITY RESTRICTIONS = 4
NUMBER OF COEFFICIENTS= 5
NUMBER OF REPLICATIONS= 1000
ANTITHETIC REPPLICATIONS ALSO INCLUDED
DEGREES OF FREEDOM FOR T DISTRIBUTION = 27
ORIGINAL COEFFICIENT ESTIMATES
103.55 122.04 3.3151 -1.1535 38.562
2000 REPPLICATIONS 95 SATISFIED
PROPORTION= 0.04750 NUMERICAL STANDARD ERROR OF PROPORTION= 0.00476
ASYMPTOTIC STANDARD ERROR OF PROPORTION= 0.00476

VARIABLE AVERAGE STDEV VARIANCE NUMERICAL SE SR 141.97 35.315 1247.1 3.6232 OSR 129.52 38.475 1480.4 3.9475 SD -1.1777 1.0566 1.1163 0.10840 OSD -1.3733 0.66244 0.43883 0.67965E-01 CONSTANT 35.130 33.957 1153.0 3.4839

| DISPLAY CPU TIME |
| CPU TIME 0.60000E-01 |

| * Now attempt to impose the restrictions directly using the trick |
| * of squaring a coefficient to force it positive. This requires |
| * nonlinear estimation. |
| * This gives results similar to column 2 of Geweke's table ii. |

| SET CPU TIME |
| NL 1 / NC=5 PITER=50 |
| NOTE. SAMPLE RANGE SET TO: 1, 32 |
| EQ Y = A + (B**2)*SR + (C**2)*OSR - (D**2)*SD - (E**2)*OSD |

5 VARIABLES IN 1 EQUATIONS WITH 5 COEFFICIENTS
32 OBSERVATIONS

COEFFICIENT STARTING VALUES
A 1.00000 B 1.00000 C 1.00000 D 1.00000 E 1.00000
100 MAXIMUM ITERATIONS, CONVERGENCE = 0.100000E-04

INITIAL STATISTICS :
TIME = 0.000 SEC. ITER. NO. 0 FUNCT. EVALUATIONS 1
LOG-LIKELIHOOD FUNCTION= -207.0281
COEFFICIENTS
1.000000 1.000000 1.000000 1.000000 1.000000
GRADIENT
0.1960723 0.1349835 0.2307822 -1.165898 -4.093769

FINAL STATISTICS :
TIME = 0.020 SEC. ITER. NO. 33 FUNCT. EVALUATIONS 45
LOG-LIKELIHOOD FUNCTION= -160.1530
COEFFICIENTS
37.63371 11.40220 11.09239 0.8808439E-08 -1.073957
GRADIENT
-0.1582881E-07 -0.8567296E-07 -0.1860299E-06 -0.2527607E-06 0.1327808E-07

MAXIMUM LIKELIHOOD ESTIMATE OF SIGMA-SQUARED = 1302.0
SUM OF SQUARED ERRORS = 41665.
GTRANSPOSE*INVERSE(H)*G STATISTIC = 0.53927E-13

| COEFFICIENT ST. ERROR T-RATIO |
| A 37.634 30.255 1.2439 |
The resulting coefficient estimates satisfy the inequality constraints specified. However, in this example, the probability that the restrictions are true is only .0475. Note, that the \texttt{BAYES} command requested only 1000 antithetic pairs (2000 replications). The examples in the Geweke paper used from 10,000 to 250,000 antithetic pairs. An increase in the number of replications will increase the computer time required to complete the estimation.

\textbf{Seemingly Unrelated Regression with Inequality Restrictions}

This example considers the estimation of firm investment relations using the data set in Judge, Hill, Griffiths, Lütkepohl and Lee \cite[Table 11.1, p. 453]{Judge1988} (from an article by Boot and Dewitt and discussed by Theil). Data is available for General Electric and Westinghouse on investment (IGE, IWH), market value (VGE, VWH) and capital stock (KGE, KWH). Consider estimation of the system:

\begin{align*}
IGE & = \beta_{11} + \beta_{12} VGE + \beta_{13} KGE + \varepsilon_1 \\
IWH & = \beta_{21} + \beta_{22} VWH + \beta_{23} KWH + \varepsilon_2
\end{align*}
subject to the inequality restrictions \(\beta_{12} > 0, \beta_{13} > 0, \beta_{22} > 0 \) and \(\beta_{23} > 0 \).

The commands that follow show how to set up the estimation in SHAZAM. The \texttt{SET RANFIX} command is used to ensure the same random numbers in repeated runs. The \texttt{SYSTEM} command is used to obtain seemingly unrelated regression estimates. Note that when this is combined with the \texttt{BAYES} command the variable names should be different across equations. If the same variable is used across equations then the \texttt{GENR} command can be used to create a duplicate variable with a different name. With the \texttt{SYSTEM} command, SHAZAM saves the coefficients and variance-covariance matrix in a form that does not include the intercept terms. Therefore, if inequality restrictions on the intercept terms are required then a constant term must be generated and included as a variable and the \texttt{NOCONSTANT} option must then be specified on the \texttt{SYSTEM} command.

The \texttt{BAYES} command in this example specifies the \texttt{NORMAL} option. This may be appropriate when the estimation procedure is not OLS. If the \texttt{NORMAL} option is not used then the \texttt{DF=} option can be used to set the degrees of freedom for the t distribution. The \texttt{NSAMP=} option requests 5000 replications. SHAZAM will then generate 5000 antithetic pairs to effectively give 10,000 replications.

```
set ranfix
sample 1 20
read (table11.1) ige vge kge iwh vwh kwh
system 2 / dn
  ols  ige  vge  kge
  ols  iwh  vwh  kwh
bayes / normal nsamp=5000
restrict vge.gt.0
restrict kge.gt.0
restrict vwh.gt.0
restrict kwh.gt.0
end
stop
```
10. ARIMA MODELS

"The end of the decline of the Stock Market will ... probably not be long, only a few more days at most."

Irving Fisher, Economist
November 14, 1929

The ARIMA command provides features for the Box-Jenkins approach (see Box and Jenkins [1976]) to the analysis of AutoRegressive Integrated Moving Average models of univariate time series. SHAZAM uses a modified version of programs written by Charles Nelson and described in Nelson [1973]. Other references are Harvey [1981]; Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 7] and Griffiths, Hill and Judge [1993, Chapter 20]. The ARIMA command has three stages. The identification stage reports the sample autocorrelation function and the sample partial autocorrelation function that can be inspected to determine a specification for an ARIMA model. The estimation stage estimates the parameters of an ARIMA model and gives diagnostic tests for checking the model adequacy. The Box-Jenkins method is to repeat the identification and estimation stage until a suitable model is found. The forecasting stage provides point forecasts and confidence intervals.

In general, the format of the ARIMA command is:

ARIMA var / options

where var is a time series variable and options is a list of desired options. The options specified determine the stage as identification, estimation or forecasting. Options that start with GRAPH prepare graphs with the GNUPLOT software as described in the PLOTS AND GRAPHS chapter.

IDENTIFICATION

For a time series \(z_t, \ t = 1, \ldots, N \) with sample mean \(\bar{z} \) the sample autocovariances are:

\[
c_j = \frac{1}{N} \sum_{t=j+1}^{N} (z_t - \bar{z})(z_{t-j} - \bar{z})
\]

\(j = 0, 1, 2, \ldots \)

The sample autocorrelations are:

\[
r_j = c_j / c_0 \quad j = 1, 2, \ldots
\]
A plot of the r_j gives the sample correlogram. If the order of the moving average process is q then the distribution of r_j for $j > q$ is approximately normal with zero mean and variance (Bartlett’s formula):

$$
\frac{1}{N} \left(1 + 2 \sum_{j=1}^{q} r_j^2 \right)
$$

The partial autocorrelations give information about the order of an autoregressive process. The jth partial autocorrelation coefficient is the estimated coefficient of z_{t-p} from a pth order autoregressive model with $p = j$. SHAZAM computes these by Durbin’s recursive method (further discussion of this method is given at the end of this section). If the autoregressive order is p the higher order partial autocorrelations are approximately normally distributed with zero mean and standard deviation $1 / \sqrt{N}$.

A test for a white noise process is given by the Ljung-Box-Pierce (see Box and Pierce [1970] and Ljung and Box [1978]) portmanteau test statistic. This test is constructed from the first J squared autocorrelations as:

$$
Q = N (N + 2) \sum_{j=1}^{J} \frac{1}{N - j} r_j^2
$$

The choice of J is arbitrary (see, for example, the discussion in Harvey [1981, p. 148]). For a white noise process Q has an asymptotic χ^2_J distribution.

For a stationary time series the correlogram function will decline at higher lags. If the correlogram shows slow decay this gives evidence for nonstationarity. Differencing is a technique to transform a nonstationary time series to a stationary process. The backward operator B is defined by:

$$
B^d z_t = z_{t-d}
$$

The first difference of z_t is given by $(1-B)z_t$ and the second difference is:

$$(1 - B)^2 z_t = (z_t - z_{t-1}) - (z_{t-1} - z_{t-2})$$

When s is the number of periods in the seasonal cycle the first seasonal difference is:

$$(1 - B^s) z_t = z_t - z_{t-s}$$
The general differencing transformation to consider is:

\[(1 - B)^d (1 - B^s)^D z_t\]

where \(d\) is the order of differencing and \(D\) is the order of seasonal differencing.

ARIMA Identification Stage Command Options

The following options are available in the identification stage of the ARIMA command:

- **ALL** Computes the time series properties for ALL orders of differencing up to the values specified with **NDIFF=** and **NSDIFF=**.

- **IAC** Computes inverse autocorrelations as described in Cleveland [1972]. The number of lags is as specified with the **NLAG=** option (the maximum is 20).

- **GRAPHAC** Plots the sample autocorrelation function using the gnuplot program. The number of lags is specified with the **NLAG=** option. An approximate 95% confidence interval for the autocorrelations is calculated based on ±2 standard errors.

- **GRAPHDATA** Plots the data using the gnuplot program. If the **LOG**, **NDIFF=** or **NSDIFF=** options are used then the plot is of the transformed data.

- **GRAPHPAC** Plots the sample partial autocorrelation function using the gnuplot program. The number of lags is specified with the **NLAGP=** option. An approximate 95% confidence interval for the partial autocorrelations is calculated based on ±2 standard errors.

- **LOG** Takes logs of the data.

- **PLOTAC** Plots the sample autocorrelation function with text characters on the SHAZAM output. Also see the **GRAPHAC** option.

- **PLOTDATA** Plots the data with text characters on the SHAZAM output. Also see the **GRAPHDATA** option.

- **PLOTPAC** Plots the sample partial autocorrelation function with text characters on the SHAZAM output. Also see the **GRAPHPAC** option.

- **WIDE** **NOWIDE** Sets the output width. NOWIDE uses 80 columns and WIDE uses 120 columns.
ACF= Saves the sample AutoCorrelation Function in the variable specified.

BEG= Sets the sample period. This option overrides the SAMPLE command. The values may be given as an observation number or as a date.

END= Specifies the order of differencing to transform the data.

NDIFF= Specifies the number of lags to consider in the calculation of the autocorrelations. The default is 24.

NLAG= Specifies the order of seasonal differencing. If this is specified then NSPAN= must be set.

NLAGP= Specifies the number of lags to consider in the calculation of the partial autocorrelations. The default is 12. (The value for NLAGP= must not exceed that for NLAG=).

NSPAN= Specifies the number of periods in the seasonal cycle. For example, set NSPAN=4 for quarterly data and NSPAN=12 for monthly data.

PACF= Saves the sample Partial AutoCorrelation Function in the variable specified.

TESTSTAT= Saves the Ljung-Box-Pierce statistics in the variable specified.

After the ARIMA identification command the temporary variables available are $ERR (error code) and $N (number of observations used in the identification phase). For more information on temporary variables see the chapter MISCELLANEOUS COMMANDS AND INFORMATION and the chapter ORDINARY LEAST SQUARES.

Example

The ARIMA command can be illustrated with the Theil textile data set (although a larger sample size is desirable). The output below gives the results from the ARIMA identification stage for the variable CONSUME.

```
ARIMA CONSUME / NLAG=8 NLAGP=8 PLOTAC PLOTPAC
IDENTIFICATION SECTION - VARIABLE=CONSUME
NUMBER OF AUTOCORRELATIONS =  8
NUMBER OF PARTIAL AUTOCORRELATIONS =  8
```
The correlogram shows that the sample autocorrelation function declines at higher lags to indicate a stationary process. Some judgement is required to determine a model specification that may describe this data. For example, to consider the suitability of an ARMA(1,1) process, the above results can be compared with theoretical patterns of autocorrelations and partial correlations of ARMA(1,1) processes that are given in Judge, Hill, Griffiths, Lütkepohl and Lee [1988, pp.698-699]. (More formal tests of stationarity are available in the chapter COINTEGRATION AND UNIT ROOT TESTS).
A Note on Calculating the Partial Autocorrelation Function

The partial autocorrelation function is approximated by a computationally fast recursive method of calculation described in Box and Jenkins [1976, Appendix A3.2, pp.82-84]. Box-Jenkins comment that "these estimates of the partial autocorrelations differ somewhat from the maximum likelihood values obtained by fitting autoregressive processes of successively higher order. They are very sensitive to rounding errors particularly when the process approaches nonstationarity." The potential for rounding error can be illustrated with monthly data on the 3-month treasury bill rate used in Pindyck and Rubinfeld [1991, Chapter 15]. The evidence is that the series is non-stationary but first differencing yields a stationary time series. The following SHAZAM commands first save the partial autocorrelation function generated by the ARIMA command in the variable PACREC. Then a set of SHAZAM commands computes the partial autocorrelation function by an exact method and saves the result in the variable PACOLS. This is then repeated for the first differences. The commands show SHAZAM features described in the chapter PROGRAMMING IN SHAZAM.

```
sample 1 462
arima tbill / nlagp=6 pacf=pacrec
dim pacols 6 beta 6 pacdols 6

do # = 1, 6
   * Use ? to request no listing of ols results
   ? ols tbill tbill(1.#) / coef=beta
   gen1 pacols:#=beta:#
endo

* Now analyze the first differences
arima tbill / nlagp=6 pacf=pacdrec ndiff=1
sample 2 462
genr tbilld=tbill-lag(tbill)
do # = 1, 6
   ? ols tbilld tbilld(1.#) / coef=beta
   gen1 pacdols:#=beta:#
endo

* Compare the results
sample 1 6
print pacols pacrec pacdols pacdrec
```

The output below shows the numerical differences between the two computational methods. The variables PACDOLS and PACDREC are similar to show that the recursive
approximation of the partial autocorrelation function is accurate for the first differences of the TBILL time series.

<table>
<thead>
<tr>
<th>PRINT</th>
<th>PACOLS</th>
<th>PACREC</th>
<th>PACDOLS</th>
<th>PACDREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9853103</td>
<td>.9849570</td>
<td>.3211617</td>
<td>.3210678</td>
<td></td>
</tr>
<tr>
<td>-.3292023</td>
<td>-.2853001</td>
<td>-.2370160</td>
<td>-.2369215</td>
<td></td>
</tr>
<tr>
<td>.2268389</td>
<td>.1769929</td>
<td>-.3292023</td>
<td>-.2853001</td>
<td></td>
</tr>
<tr>
<td>-.6588303E-02</td>
<td>.1690129E-01</td>
<td>-.2410939E-01</td>
<td>-.2402593E-01</td>
<td></td>
</tr>
<tr>
<td>.1629670E-01</td>
<td>.5984347E-02</td>
<td>.2512562E-01</td>
<td>.2511988E-01</td>
<td></td>
</tr>
<tr>
<td>-.3295990E-01</td>
<td>-.2934607E-01</td>
<td>-.2968467</td>
<td>-.2964889</td>
<td></td>
</tr>
</tbody>
</table>

ESTIMATION

A simple example of a time series model is the ARMA(1,1) process given by:

\[z_t - \phi_1 z_{t-1} = u_t - \theta_1 u_{t-1} + \delta \]

where \(u_t \) is a random error and the unknown parameters are \(\phi_1 \), \(\theta_1 \) and \(\delta \). To generalize this define polynomials in the backward operator as:

\[\phi(B) = 1 - \phi_1 B - ... - \phi_p B^p \quad \text{and} \quad \theta(B) = 1 - \theta_1 B - ... - \theta_q B^q \]

where \(p \) is the order of the autoregressive process and \(q \) is the order of the moving average process. The ARIMA(p, d, q) model has the form:

\[\phi(B)(1 - B)^d z_t = \theta(B) u_t + \delta \]

Note that some authors define lag polynomials with opposite signs from that used here. Therefore, the computer output must be interpreted carefully.

A feature of economic time series is serial correlation at the seasonal lag. Seasonality can be modelled by defining the polynomials:

\[\Gamma(B^s) = 1 - \Gamma_1 B^s - ... - \Gamma_P B^{sp} \quad \text{and} \quad \Delta(B^s) = 1 - \Delta_1 B^s - ... - \Delta_Q B^{sQ} \]

where \(P \) is the order of the seasonal AR process and \(Q \) is the order of the seasonal MA process. The multiplicative seasonal ARIMA model has the general form:

\[\Gamma(B^s) \phi(B)(1 - B)^d (1 - B^s)^D z_t = \Delta(B^s) \theta(B) u_t + \delta \]
Let \(\beta' = [\phi' \ \theta' \ \Gamma' \ \Delta' \ \delta] \) be a \(K \times 1 \) vector of the model parameters where \(K = p+q+P+Q+1 \). Parameter estimates are obtained as the values that minimize the sum of squares function:

\[
S(\beta) = \sum_{t=1}^{N} u_t(\beta)^2
\]

A pure autoregressive model can be estimated by OLS (see the chapter **DISTRIBUTED LAG MODELS**). The inclusion of seasonal and moving average components means that nonlinear estimation methods are required. The ARIMA estimation uses a version of Marquardt’s algorithm [1963]. Each iteration uses a gradient estimate that is calculated by numerical approximation. Let \(\hat{\beta}^{(i)} \) be the parameter estimates at iteration \(i \). The approximation used is:

\[
\frac{\partial u_t(\hat{\beta}^{(i)})}{\partial \beta_k} \approx \frac{1}{h_k} \left[u_t(\hat{\beta}^{(i)} + h_k e_k) - u_t(\hat{\beta}^{(i)}) \right] \quad \text{for } k = 1, \ldots, K
\]

where \(e_k \) is a \(K \times 1 \) zero vector with 1 in the \(k^{th} \) element and \(h_k = h \hat{\beta}_k^{(i)} \) where the scalar \(h \) is referred to as the step length. In SHAZAM \(h \) can be specified with the **STEPSIZE** option and the default value is \(h = 0.01 \).

At each iteration the residuals are computed recursively. Presample values are required to start the recursion. The ARIMA estimation computes the presample values by a back-forecasting method. The treatment of presample values means that the parameter estimates from the **ARIMA** command will be different from estimates obtained with the **OLS** or **AUTO** SHAZAM commands (where applicable).

The ARIMA nonlinear estimation converges when one of two convergence criteria is met. The first criteria is based on the relative change in each parameter and requires:

\[
\left| \hat{\beta}_k^{(i)} - \hat{\beta}_k^{(i-1)} \right| / \hat{\beta}_k^{(i)} < 0.0001 \quad \text{for all } k
\]

The second convergence criteria is based on the relative change in the sum of squares and requires:

\[
\left| S(\hat{\beta}^{(i)}) - S(\hat{\beta}^{(i-1)}) \right| / S(\hat{\beta}^{(i-1)}) < 0.000001
\]

As in any non-linear optimization, convergence to a global minimum is not guaranteed and the choice of good starting values is important. If the parameter estimates move into
unacceptable regions then SHAZAM may terminate with overflow errors. If this occurs then the estimation can be restarted with different starting values or a different model specification. Users should carefully check their output for evidence of model convergence.

The variance of the estimated residuals (reported as SIGMA^{*2} on the SHAZAM output) is calculated as:

$$\hat{\sigma}_u^2 = \frac{1}{N - K} \sum_{t=1}^{N} u_t (\hat{\beta})^2$$

If the DN option on the ARIMA command is used then the divisor is N instead of $(N - K)$. The variance-covariance matrix of the parameter estimates is estimated as:

$$\hat{\sigma}_u^2 (X'X)^{-1}$$

where the individual elements of the X matrix are:

$$x_{kt} = -\frac{\partial u_t (\hat{\beta})}{\partial \beta_k}$$

The calculation of the X matrix uses numerical derivatives as described above.

Following model estimation the SHAZAM output reports a number of statistics that are useful for evaluating the model adequacy. The Ljung-Box-Pierce statistic (see the identification stage) is constructed from the squared autocorrelations of the estimated residuals. This gives a test for white noise errors. With J lagged residual autocorrelations the test statistic can be compared with a χ^2_{J-K+1} distribution. If there is no constant term in the model (when the NOCONSTANT option is used) then the test statistic has an approximate χ^2_{J-K} distribution under the null hypothesis of white noise errors.

For model selection purposes the Akaike information criterion (AIC) and the Schwarz criterion (SC) are computed as:

$$\text{AIC} (K) = \log \left(\hat{\sigma}_u^2 \right) + 2 \cdot K / N$$
$$\text{SC} (K) = \log \left(\hat{\sigma}_u^2 \right) + K \log (N) / N$$

For the differenced series $y_t = (1 - B)^d (1 - B^s)^D z_t$ the cross-covariances between y_t and the estimated residuals \hat{u}_{t-j} are:
\[c_{(\bar{y}\hat{u})j} = \frac{1}{N} \sum_{t=j+1}^{N} (y_t - \bar{y})(\hat{u}_{t-j} - \bar{u}) \quad j = 0, \pm 1, \pm 2, \ldots \]

where \(\bar{y} = \frac{1}{N} \sum_{t=1}^{N} y_t\) and \(\bar{u} = \frac{1}{N} \sum_{t=1}^{N} \hat{u}_t\)

The cross-correlations are computed as:

\[r_{(y\hat{u})j} = \frac{c_{(y\hat{u})j}}{\sqrt{c_{(yy)0}c_{(\hat{u}\hat{u})0}}} \quad j = 0, \pm 1, \pm 2, \ldots \]

The theoretical \(u_t\) are correlated with current and future values of \(y_t\) but are not correlated with past values. The estimated cross-correlations reported on the SHAZAM output can be inspected to see if they exhibit such a pattern.

ARIMA Estimation Stage Command Options

In general, the format of the ARIMA command for the estimation stage is:

\[\text{ARIMA} \ var / \ NAR= \ NMA= \ options \]

where \(var\) is a time series variable and \(options\) is a list of desired options. The options as described for the identification stage are:

- **LOG**, **WIDE/NOWIDE**, **BEG=**, **END=**, **NDIFF=**, and **NSDIFF=**.

Options described for the OLS command that may be used are:

- **ANOVA**, **PCOR**, **PCOV**, **COV=**, **STDERR=**, and **TRATIO=**.

Other options are:

- **DN** Uses a divisor of \(N\) instead of \((N-K)\) when estimating \(SIGMA**2\).
- **GRAPHRES** Prepares a gnuplot plot of the residuals.
- **NOCONSTANT** Excludes the constant term.
PITER
Prints the parameter estimates and the value of the sum of squares function at every iteration. By default only the results at the final iteration are listed.

PLOTRES
Plots the residuals with text characters on the SHAZAM output. Also see the GRAPHRES option.

RESTRICT
Uses zero starting values as zero restrictions. Also see the START and START= options. For example, with a quarterly time series INV, an AR(5) process with zero coefficients for the 2nd and 3rd autoregressive coefficients may be estimated with the commands:

```
arima inv / nar=5 start restrict beg=1950.1 end=1985.4
.5 0 0 .1 .1 5
```

START
Indicates that parameter starting values are entered on the line immediately following the ARIMA command. This option will not work when the ARIMA command is in a DO-loop. Also see the START= option below.

ACF=
Saves the AutoCorrelation Function of the estimated residuals in the variable specified.

COEF=
Saves the estimated Coefficients in the variable specified. These values can be used as input to the ARIMA forecasting stage. This option should not be confused with the COEF= option used in the forecasting stage. In the estimation stage COEF= saves the coefficients while, in the forecasting stage, the COEF= option uses the coefficients as input parameters.

ITER=
Sets the maximum number of iterations. The default is 50. If this iteration limit is exceeded it may be sensible to try different starting values or a different model specification.

NAR=
Specifies the order of the AR (autoregressive) process.

NMA=
Specifies the order of the MA (moving average) process.

NSAR=
Specifies the order of the Seasonal AR process. If this is specified then NSPAN= must be set.
NSMA= Specifies the order of the Seasonal MA process. If this is specified then NSSPAN= must be set.

NSSPAN= Specifies the number of periods in the seasonal cycle. For example, set NSSPAN=4 for quarterly data and NSSPAN=12 for monthly data.

PREDICT= Saves the Predicted values in the variable specified. These are the implied one-step-ahead forecasts.

RESID= Saves the estimated Residuals in the variable specified.

START= Specifies a vector of starting values. The input sequence for the starting values must correspond to NAR=, NMA=, NSAR=, and NSMA= with the constant term given as the last value. The calculation of numeric derivatives means that zero starting values can cause problems in starting the iterations. Therefore, SHAZAM sets a zero value to 0.01 to get the iterations started. Also see the RESTRICT option above.

STEPSIZE= Specifies the stepsize to use in calculating the numeric derivatives. The default value is 0.01. The estimated covariance matrix of the parameter estimates may be sensitive to this value.

TESTSTAT= Saves the Ljung-Box-Pierce statistics in the variable specified.

Following model estimation the available temporary variables as described for the OLS command are:

$ERR, $K, $LAIC, $LSC, $N, $R2, $SIG2, $SSE, $SSR, and $SST.

The choice of good starting values will facilitate model convergence. If the START or START= option are not specified then SHAZAM will set default starting values. If NAR= or NMA= do not exceed 1 then default starting values of 0.5 are used for the coefficients. Otherwise, default starting values of 0.1 are used for the coefficients. The default starting value for the constant term is 1.0.

Example

The ARIMA estimation stage can be demonstrated with the CONSUME variable that was inspected in the identification stage. The example below shows the estimation of an
ARIMA(1,1) model. When the **START** option is used the starting values for the coefficients are entered on the line after the **ARIMA** command as follows:

```
arima consume / nar=1 nma=1 start
0.5 -0.2 100
```

The first value is the AR parameter, the second value is the MA parameter and the final value is the starting value for the constant term. Alternatively, starting values for the model estimation can be entered in a variable, say **ALPHA**, as shown in the next listing of SHAZAM commands.

```
dim alpha 3
gen1 alpha:1= 0.5
gen1 alpha:2= -.2
gen1 alpha:3= 100
arima consume / nar=1 nma=1 start=alpha
```

The output below gives results from the estimation of an ARMA(1,1) model.

```
| ARIMA CONSUME / NAR=1 NMA=1 START=ALPHA |
| ESTIMATION PROCEDURE                |
| STARTING VALUES OF PARAMETERS ARE:  |
|   .50000   -.20000   100.00          |
| MEAN OF SERIES =   134.5             |
| VARIANCE OF SERIES =   555.9         |
| STANDARD DEVIATION OF SERIES =   23.58|
| INITIAL SUM OF SQUARES =   17958.972 |
| ITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LESS THAN .1E-03 |
| NET NUMBER OF OBS IS   17            |
| DIFFERENCING: 0 CONSECUTIVE, 0 SEASONAL WITH SPAN 0 |
| CONVERGENCE AFTER 30 ITERATIONS     |
| INITIAL SUM OF SQS=   17958.972      |
| FINAL SUM OF SQS=   2527.1076        |

R-SQUARE =   .7159   R-SQUARE ADJUSTED =   .6753
VARIANCE OF THE ESTIMATE-SIGMA**2 =   166.02
STANDARD ERROR OF THE ESTIMATE-SIGMA =   12.885
AKAIKE INFORMATION CRITERIA -AIC(K) =   5.4650
SCHWARZ CRITERIA- SC(K) =   5.6121

<table>
<thead>
<tr>
<th>PARAMETER ESTIMATES</th>
<th>STD ERROR</th>
<th>T-STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR( 1)</td>
<td>.59682</td>
<td>2.802</td>
</tr>
<tr>
<td>MA( 1)</td>
<td>-.94992</td>
<td>-10.34</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>55.041</td>
<td>28.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESIDUALS</th>
<th>AUTOCORRELATIONS</th>
<th>STD ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-12</td>
<td>-.37 .04 .23 -.12</td>
<td>.12 -.04 .00 -.16 .16 -.06 -.06 -.06 .24</td>
</tr>
<tr>
<td>13-16</td>
<td>-.05 .00 -.08 -.03</td>
<td>.30</td>
</tr>
</tbody>
</table>
```
The estimation converged in 30 iterations. The estimated equation (where z_t denotes the variable CONSUME) is:

\[z_t - 0.59682 z_{t-1} = \hat{u}_t + 0.94992 \hat{u}_{t-1} + 55.041 \]

Note that with different starting values the estimation may converge to different parameter estimates. Therefore, re-estimation with different starting values may be useful. The above output shows that the Ljung-Box-Pierce test statistics are less than the critical values from a chi-square distribution at any reasonable significance level and so the hypothesis of white noise errors is not rejected.

The CONSUME variable is annual data and therefore modelling of seasonal effects need not be considered. In economic analysis there is interest in modelling seasonally unadjusted quarterly and monthly data. A multiplicative seasonal autoregressive process that may be considered is:

\[(1 - \Gamma_1 B^4)(1 - \phi_1 B)z_t = u_t + \delta \]

That is,

\[z_t - \Gamma_1 z_{t-4} - \phi_1 z_{t-1} + \Gamma_1 \phi_1 z_{t-5} = u_t + \delta \]

Suppose that quarterly seasonally unadjusted data is available in the variable ZQ. The SHAZAM command for estimation of the above model is:

ARIMA ZQ / NSPAN=4 NSA=1 NAR=1
FORECASTING

An ARIMA model can be used to forecast future values of a time series. The goal is to obtain estimates \hat{z}_{T+l} as the forecast at origin date T ($p \leq T \leq N$) for lead time l ($l \geq 1$) of z_{T+l}. The forecasting exercise is facilitated by recognizing that the data generation process for z_{T+l} can be expressed in different forms. The first form to consider is the difference-equation form. For example, the ARMA(1,1) process can be expressed as:

$$z_{T+l} = \phi_1 z_{T+l-1} + u_{T+l} - \theta_1 u_{T+l-1} + \delta$$

The second form to analyze is the random shock form. Any ARIMA process can be expressed as a linear function of the current and past random shocks as:

$$z_{T+l} = \mu + u_{T+l} + \Psi_1 u_{T+l-1} + \Psi_2 u_{T+l-2} + ...$$

where the constant μ and the weights $\Psi_1, \Psi_2, ...$ are determined as functions of the model parameters. The forecast can be written in the form:

$$\hat{z}_{T+l} = \mu + \Psi_l u_T + \Psi_{l+1} u_{T-1} + ...$$

The l-step ahead forecast error is:

$$e_{T+l} = [z_{T+l} - \hat{z}_{T+l}] = u_{T+l} + \Psi_1 u_{T+l-1} + ... + \Psi_{l-1} u_{T+1}$$

The error has zero expectation and variance:

$$V[e_{T+l}] = \sigma_u^2 \left(1 + \Psi_1^2 + ... + \Psi_{l-1}^2 \right)$$

In SHAZAM the forecasting procedure is made operational as follows. Input requirements from the estimation stage are the model parameter estimates $\hat{\beta}$ and the estimate of the error variance $\hat{\sigma}_u^2$ (the SHAZAM output labels this as SIGMA^{**2}). If a moving average component is present then estimated residuals enter the forecast. Therefore, a sequence of one-step-ahead prediction errors is computed to the end of the sample period (including back-forecasting of pre-sample residuals). Point forecasts are calculated recursively from the difference-equation form of the process.

For example, for the ARMA(1,1) model the $l = 1$ period ahead forecast is:

$$\hat{z}_{T+1} = \phi_1 z_T - \theta_1 \hat{u}_T + \hat{\delta}$$

The $l = 2$ periods ahead forecast is:

$$\hat{z}_{T+2} = \phi_1 \hat{z}_{T+1} + \hat{\delta}$$
The \(l = 3 \) periods ahead forecast is:

\[
\hat{z}_{T+3} = \phi_1 \hat{z}_{T+2} + \delta
\]

The \(\Psi_i \) weights are calculated (these are listed on the SHAZAM output in the column marked \(\text{PSI WT} \)) and are used to estimate the forecast variance as \(\hat{\sigma}_{T+1}^2 \). A 95% confidence interval is computed as:

\[
\hat{z}_{T+1} \pm 1.96 \hat{\sigma}_{T+1}^{1/2}
\]

Users should be aware that the 95% confidence interval is approximate. If the sample period set for the forecasting stage extends beyond the sample period used in the estimation stage then Nelson [1973, p. 224] notes that "the computations of the variance of residuals is restricted to the sample period so that any postsample deterioration in the fit of the model will not be reflected in standard errors and confidence intervals."

ARIMA Forecasting Stage Command Options

In general, the format of the ARIMA command for the forecasting stage is:

\[
\text{ARIMA } \text{var} / \text{NAR=} \text{NMA=} \text{COEF=} \text{SIGMA=} \text{FBEG=} \text{FEND=} \text{options}
\]

where \(\text{var} \) is the variable to forecast and \(\text{options} \) is a list of desired options. The options for differencing the data as used in the identification stage are:

\(\text{NDIFF=} \), \(\text{NSDIFF=} \), and \(\text{NSPAN=} \).

The options for model specification as used in the estimation stage are:

\(\text{NOCONSTANT} \), \(\text{BEG=} \), \(\text{END=} \), \(\text{NAR=} \), \(\text{NMA=} \), \(\text{NSAR=} \), and \(\text{NSMA=} \).

Other options are:

- **DN**
 - Uses a divisor of \(N \) instead of \((N-K) \) when estimating \(\text{SIGMA}^2 \). Also see the \(\text{SIGMA=} \) option below.

- **GRAPHFORC**
 - Prepares gnuplot plots of the forecast.

- **LOG**
 - Takes logs of data. The data \(z_t \) is transformed to \(y_t = \log(z_t) \). If this option is specified then it must also have been used in the estimation stage. SHAZAM first generates forecasts in log form, \(\hat{y}_{T+1} \), and then
generates antilog forecasts, \(\hat{z}_{T+l} \). Some statistical theory is needed to understand how the forecasts in antilog form are obtained. Consider a random variable \(Y \) distributed as \(N(\mu, \sigma^2) \) and define the random variable \(Z = \exp(Y) \). Then the random variable \(Z \) has mean \(\exp(\mu + \sigma^2/2) \) (see, for example, Mood, Graybill and Boes [1974]). Therefore, the conditional expectation forecast of \(z_{T+l} = \exp(\hat{y}_{T+l}) \) is:

\[
\hat{z}_{T+l} = \exp\left(\hat{y}_{T+l} + \hat{\sigma}^2_u / 2\right)
\]

For the derivation of the standard errors of the anti-log forecasts, see Nelson [1973, p. 163]. Note that the confidence interval for \(\hat{z}_{T+l} \) is not symmetric.

PLOTFORC Plots the forecast with 95% confidence intervals with text characters on the SHAZAM output. Also see the **GRAPHFORC** option.

COEF= Gives the model coefficients. If this is not specified then values must be entered on the line following the **ARIMA** command. The input sequence for the coefficients must correspond to **NAR=**, **NMA=**, **NSAR=**, and **NSMA=** with the constant term given as the last value.

FBEG= **FEND=** Specifies the origin date (FBEG=) and the last observation (FEND=) of the forecast. The origin date may not be greater than the final observation of the **SAMPLE** command or the value set with **END=**. Furthermore, the origin date must exceed the first observation of the **SAMPLE** command (or the value set with **BEG=**) by an amount at least equal to the maximum AR lag. These values may be given as an observation number or as a date. This option is required.

FCSE= Saves the forecast standard errors in the variable specified.

PREDICT= Saves the predictions in the variable specified.

PSI= Saves the \(\psi_i \) weights in the variable specified.

RESID= Saves the forecast residuals in the variable specified.

SIGMA= Gives the value of **SIGMA** to use in calculating the forecast standard errors. By default the data for the current sample period will be used to estimate **SIGMA**. A recommended approach is to follow estimation with the command:
ARIMA MODELS

\texttt{gen1} \texttt{s=sqrt(sig2)}

Then use the option \texttt{SIGMA=S} for the ARIMA forecasting. When this option is used the \texttt{DN} option is not applicable.

\textbf{Example}

A listing of SHAZAM commands for estimation and forecasting of an ARMA(1,1) model for the \textit{CONSUME} variable is:

\begin{verbatim}
\texttt{arima consume / nar=1 nma=1 coef=beta start=alpha}
\texttt{gen1 s=sqrt(sig2)}
\texttt{arima consume / nar=1 nma=1 coef=beta fbeg=14 fend=19 sigma=s}
\texttt{graphforc}
\end{verbatim}

In the above commands the parameter estimates from the model estimation are saved in the variable \textit{BETA} and the value of \texttt{SIGMA**2} is available in the temporary variable SIG2. These become input for the forecasting. The origin date for the forecast is set at observation 14 and the final forecast period is set at observation 19. This gives a 3 period ex post (within sample) forecast and a 2 period ex ante (out of sample) forecast.

SHAZAM output from the \texttt{ARIMA} forecast is:

\begin{verbatim}
|_ARIMA CONSUME / NAR=1 NMA=1 COEF=BETA FBEG=14 FEND=19 SIGMA=S GRAPHFORC

ARIMA FORECAST
PARAMETER VALUES ARE:
 AR(1)= .59682
 MA(1)= -.94992
 CONSTANT = 55.041

FROM ORIGIN DATE 14, FORECASTS ARE CALCULATED UP TO 5 STEPS AHEAD

<table>
<thead>
<tr>
<th>FUTURE DATE</th>
<th>LOWER</th>
<th>FORECAST</th>
<th>UPPER</th>
<th>ACTUAL</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>141.881</td>
<td>167.136</td>
<td>192.390</td>
<td>154.300</td>
<td>-12.8356</td>
</tr>
<tr>
<td>16</td>
<td>108.277</td>
<td>154.791</td>
<td>201.306</td>
<td>149.000</td>
<td>-5.79115</td>
</tr>
<tr>
<td>17</td>
<td>95.3940</td>
<td>147.424</td>
<td>199.453</td>
<td>165.500</td>
<td>18.0763</td>
</tr>
<tr>
<td>18</td>
<td>89.1687</td>
<td>143.027</td>
<td>196.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>85.9081</td>
<td>140.402</td>
<td>194.897</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEPS AHEAD</th>
<th>STD ERROR</th>
<th>PSI WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.88</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>23.73</td>
<td>1.5467</td>
</tr>
<tr>
<td>3</td>
<td>26.55</td>
<td>.9231</td>
</tr>
<tr>
<td>4</td>
<td>27.48</td>
<td>.5509</td>
</tr>
<tr>
<td>5</td>
<td>27.80</td>
<td>.3288</td>
</tr>
</tbody>
</table>

VARIANCE OF ONE-STEP-AHEAD ERRORS-SIGMA**2 = 166.0
STD.DEV. OF ONE-STEP-AHEAD ERRORS-SIGMA = 12.88
\end{verbatim}
11. AUTOCORRELATION MODELS

"It can be predicted with all security that in fifty years light will cost one fiftieth of its present price, and in all the big cities there will be no such thing as night."

J.B.S. Haldane
British Scientist, 1927

The **AUTO** command provides features for estimation of models with autocorrelated errors. Consider the linear model:

\[
Y_t = X_t\beta + \varepsilon_t \quad \text{for} \quad t = 1, \ldots, N
\]

where \(Y_t\) is an observation on the dependent variable, \(X_t\) is a vector of observations on \(K\) explanatory variables, and \(\beta\) is a vector of unknown parameters. Disturbances that follow an autoregressive process of order \(p\) (an AR(\(p\)) process) have the form:

\[
\varepsilon_t = \sum_{j=1}^{p} \rho_j \varepsilon_{t-j} + v_t
\]

Disturbances that follow a moving average process of order \(q\) (an MA(\(q\)) process) have the form:

\[
\varepsilon_t = v_t + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j}
\]

where the \(\rho_j\) and \(\theta_j\) are unknown parameters and \(v_t\) is a random error. The order of the autoregressive process or the moving average process is specified with the **ORDER**= option on the **AUTO** command.

ESTIMATION WITH AR(1) ERRORS

The model with first-order autoregressive errors has the form:

\[
Y_t = X_t\beta + \varepsilon_t \quad \text{and} \quad \varepsilon_t = \rho \varepsilon_{t-1} + v_t \quad \text{with} \quad |\rho| < 1
\]
where \(\rho \) is the autocorrelation parameter and \(v_t \) is a random disturbance. Using the assumptions \(E[v_t] = 0, \ E[v_t^2] = \sigma_v^2, \ E[v_t v_s] = 0 \) for \(t \neq s \), the covariance matrix for \(\epsilon \) can be expressed as:

\[
E(\epsilon \epsilon') = \sigma_v^2 \Omega = \frac{\sigma_v^2}{1 - \rho^2} \begin{bmatrix}
1 & \rho & \rho^2 & \ldots & \rho^{N-1} \\
\rho & 1 & \rho & \ldots & \rho^{N-2} \\
\rho^2 & \rho & 1 & \ldots & \rho^{N-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{N-1} & \rho^{N-2} & \ldots & \ldots & 1
\end{bmatrix}
\]

SHAZAM provides a number of methods for estimating the parameters of the model with AR(1) errors.

Cochrane-Orcutt Iterative Estimation

The SHAZAM default estimation method for the model with AR(1) errors is Cochrane-Orcutt iterative estimation. The method proposed by Cochrane-Orcutt [1949] is extended to include the first observation with the Prais-Winsten [1954] transformation and the estimation is iterated until a convergence criteria is satisfied. The steps in the estimation procedure are as follows.

STEP 1: Estimate the regression equation by OLS and obtain residuals \(e_t \).

STEP 2: Run the regression:

\[
e_t = \rho e_{t-1} + v_t^*
\]

This gives the least squares estimate of \(\rho \) as:

\[
\hat{\rho} = \frac{\sum_{t=2}^{N} e_t e_{t-1}}{\sum_{t=2}^{N} e_t^2}
\]

STEP 3: Use the estimate \(\hat{\rho} \) to obtain transformed observations \(Y^* \) and \(X^* \) as:

\[
Y_1^* = \sqrt{1 - \hat{\rho}^2} \ Y_1, \quad X_1^* = \sqrt{1 - \hat{\rho}^2} \ X_1 \quad \text{and}
\]

\[
Y_t^* = Y_t - \hat{\rho} Y_{t-1} , \quad X_t^* = X_t - \hat{\rho} X_{t-1} \quad \text{for} \quad t = 2, 3, \ldots, N
\]

An estimate of \(\beta \) is obtained from an OLS regression of \(Y^* \) on \(X^* \). A new set of residuals is then calculated and steps 2 and 3 are repeated until successive estimates of \(\rho \) differ by less
than .001 or the value set with the CONV= option on the AUTO command. The maximum number of iterations is 19 and this can be changed with the ITER= option. If the DROP option is used, the estimates are obtained by dropping the first observation.

The final estimate of ρ, say \(\tilde{\rho} \), can be used to construct an estimate \(\tilde{\Omega} \) of the matrix \(\Omega \). Then the final parameter estimates are given by:

\[
\tilde{\beta} = (X'\tilde{\Omega}^{-1}X)^{-1}X'\tilde{\Omega}^{-1}Y
\]

The transformed residuals are:

\[
\tilde{v}_1 = \sqrt{1 - \tilde{\rho}^2} \tilde{e}_1
\]
\[
\tilde{v}_t = \tilde{e}_t - \tilde{\rho} \tilde{e}_{t-1} \quad t = 2, \ldots, N
\]

where \(\tilde{e} = Y - X\tilde{\beta} \)

The estimate of the covariance matrix of \(\tilde{\beta} \) is:

\[
\tilde{\sigma}_v^2 = \frac{1}{N-K} (\tilde{v}'\tilde{v}) = \frac{1}{N-K} (Y - X\tilde{\beta})'\tilde{\Omega}^{-1}(Y - X\tilde{\beta})
\]

The R² measure is:

\[
1 - \frac{\tilde{v}'\tilde{v}}{Y'Y - \bar{Y}^2}
\]

The predicted values that are saved with the PREDICT= option are computed as:

\[
\hat{Y}_1 = X'_1\tilde{\beta}
\]
and

\[
\hat{Y}_t = X'_t\tilde{\beta} + \tilde{\rho} (\hat{Y}_{t-1} - X'_{t-1}\tilde{\beta}) \quad \text{for} \quad t = 2, \ldots, N
\]

The residuals that are saved with the RESID= option are obtained as \(Y - \hat{Y} \).

After estimation it may be useful to test for an AR(1) error term by testing the null hypothesis \(H_0: \rho = 0 \) against the alternative \(H_1: \rho \neq 0 \). Harvey [1990, pp. 200-201] discusses a Wald test that can be constructed as:

\[
t = \frac{\tilde{\rho}}{\sqrt{V(\tilde{\rho})}} \quad \text{where} \quad V(\tilde{\rho}) = (1 - \tilde{\rho}^2) / N
\]
This test statistic has an asymptotic standard normal distribution under the null hypothesis and is reported as the **ASYMPTOTIC T-RATIO** on the SHAZAM output.

Grid Search Estimation

The **GS** option on the **AUTO** command implements a Hildreth-Lu [1960] least squares grid search procedure. SHAZAM considers values of ρ ranging from -0.9 to 0.9 in increments of 0.1. For each of these values a regression of Y^* on X^* is estimated and the error sum of squares is computed. The value of ρ for which the sum of squared errors is smallest is chosen. Then, SHAZAM refines the value of ρ by searching in the neighbourhood of the chosen ρ in increments of 0.01. The refined value of ρ associated with the minimum sum of squared errors is selected as the optimal ρ. This method is illustrated later in this chapter.

Maximum Likelihood Estimation by the Beach-MacKinnon Method

Under the assumption of normality the log-likelihood function for the model with autocorrelated errors can be expressed as:

$$L(\beta, \Omega, \sigma^2_v) = -\frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln \sigma^2_v - \frac{1}{2} \ln|\Omega| - \frac{1}{2} \frac{(Y - X\beta)\Omega^{-1}(Y - X\beta)}{\sigma^2_v}$$

With the AR(1) error model $|\Omega^{-1}| = 1 - \rho^2$. The Beach and MacKinnon [1978] estimation procedure is to first maximize the log-likelihood function with respect to β holding ρ fixed (initially $\rho=0$) and then maximize L with respect to ρ considering β fixed. The solutions to these two maximization problems are developed in Beach and MacKinnon. The estimation is iterated until two successive estimates of ρ differ by less than .001 or the value set with the **CONV**= option.

Maximum Likelihood Estimation by Grid Search

The **GS** and **ML** options on the **AUTO** command give a variation on the previous grid search method. Dhrymes [1971, p. 70] shows that maximizing the likelihood function is equivalent to minimizing:

$$\frac{\sigma^2_v(\rho)}{(1 - \rho^2)^{1/N}}$$

The minimum is located using the same grid search method described previously. Note that the previous method was concerned with minimizing $\sigma^2_v(\rho)$. Thus the two methods
are based on different objective functions. Asymptotically the two grid search methods are equivalent since:

$$\lim_{N \to \infty} (1 - \rho^2)^{1/N} = 1 \quad \text{when} \quad |\rho| < 1$$

Nonlinear Least Squares

The PAGAN option on the AUTO command gives estimation by a nonlinear least squares method that is described in more detail later in this chapter.

TESTS FOR AUTOCORRELATION AFTER CORRECTING FOR AR(1) ERRORS

After correcting for first-order autocorrelation it is a good idea to check whether any autocorrelation remains in the v_t residuals. If so then it is possible that higher order autocorrelation exists. A simple procedure is to use a modification of the Durbin [1970] h test which is appropriate since a model corrected for autocorrelation could actually be rewritten as a lagged dependent variable model. Denote ϕ as the first order autoregressive parameter of the series v_t. An estimate is obtained as:

$$\hat{\phi} = \frac{\sum_{t=2}^{N} \tilde{v}_t \tilde{v}_{t-1}}{\sum_{t=2}^{N} \tilde{v}_t^2}$$

Consider testing the null hypothesis H_0: $\phi = 0$ against the alternative H_1: $\phi \neq 0$. When the RSTAT, LIST, or MAX options is used with the AR(1) error model SHAZAM computes the test statistic:

$$h' = \hat{\phi} \sqrt{\frac{N}{1 - N V(\hat{\rho})}}$$

This statistic is printed on the SHAZAM output as:

DURBIN H STATISTIC (ASYMPTOTIC NORMAL)
MODIFIED FOR AUTO ORDER=1

If the original model has a lagged dependent variable then another modified Durbin h statistic can be derived. This model is:

$$Y_t = \gamma Y_{t-1} + X_t' \beta + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \rho \varepsilon_{t-1} + v_t$$
Consider testing the null hypothesis $H_0: \phi = 0$ in:

$$v_t = \phi v_{t-1} + w_t$$

The modified Durbin h test statistic is:

$$h' = \hat{\phi} \sqrt{\frac{N}{1 - N [V(\hat{\rho}) + 2 \text{Cov}(\hat{\rho}, \hat{\gamma}) + V(\hat{\gamma})]}}$$

In this case, if the DLAG option is used, the h statistic is labeled on the output as:

DURBIN H STATISTIC (ASYMPTOTIC NORMAL)
MODIFIED FOR AUTO ORDER=1 WITH LAGGED DEPVAR

In both cases the h statistics can be compared with a standard normal distribution.

ESTIMATION WITH AR(2) ERRORS

The model with AR(2) errors has the form:

$$Y_t = X_t' \beta + \varepsilon_t$$

with

$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + v_t$$

where $E[v_t] = 0$, $E[v_tv_s] = 0$ for $t \neq s$ and $E[v_t^2] = \sigma_v^2$. This process will be stationary if:

$$\rho_1 + \rho_2 < 1, \quad \rho_2 - \rho_1 < 1, \quad \text{and} \quad \rho_1, \rho_2 \in (-1, 1).$$

The region in ρ_1 and ρ_2 space defined by these conditions is called the stability triangle. A discussion of the stability triangle is in Box and Jenkins [1976, pp. 58-65]. The covariance matrix of ε is $E[\varepsilon\varepsilon'] = \sigma_v^2 \Omega$. The form of Ω for the model with AR(2) errors is discussed in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Section 8.2.2]. As in the AR(1) error case SHAZAM offers a number of estimation methods.

Cochrane-Orcutt Iterative Estimation

The SHAZAM default estimation method for the model with AR(2) errors is a Cochrane-Orcutt iterative estimation procedure that is implemented as follows.

STEP 1: Estimate the regression equation by OLS and obtain residuals e_t.

STEP 2: Get estimates $\hat{\rho}_1$ and $\hat{\rho}_2$ of ρ_1 and ρ_2 from the regression:

$$e_t = \rho_1 e_{t-1} + \rho_2 e_{t-2} + v_t^*$$

for $t = 3, 4, \ldots, N$
STEP 3: Obtain transformed observations Y^* and X^* as:

$$Y_1^* = \sqrt{\hat{a}} Y_1, \quad X_1^* = \sqrt{\hat{a}} X_1$$

where

$$\hat{a} = (1 + \hat{\rho}_2)((1 - \hat{\rho}_2)^2 - \hat{\rho}_1^2)/(1 - \hat{\rho}_2)$$

$$Y_2^* = \sqrt{1 - \hat{\rho}_2^2}\left(Y_2 - \frac{\hat{\rho}_1}{1 - \hat{\rho}_2} Y_1\right), \quad X_2^* = \sqrt{1 - \hat{\rho}_2^2}\left(X_2 - \frac{\hat{\rho}_1}{1 - \hat{\rho}_2} X_1\right)$$

and

$$Y_t^* = Y_t - \hat{\rho}_1 Y_{t-1} - \hat{\rho}_2 Y_{t-2}, \quad X_t^* = X_t - \hat{\rho}_1 X_{t-1} - \hat{\rho}_2 X_{t-2} \quad \text{for } t = 3, 4, \ldots, N$$

An estimate of β is obtained from an OLS regression of Y^* on X^*. A new set of residuals is then calculated and steps 2 and 3 are repeated. The iterations stop when successive estimates of both ρ_1 and ρ_2 differ by less than .001 or the value set with the CONV= option.

Grid Search Estimation

When the GS and ORDER=2 options are specified on the AUTO command the estimation method for ρ_1 and ρ_2 is by a grid search. The search is made within the stability triangle using initial spacing of .25 for the two values of ρ. The method is not guaranteed to yield a global maximum, particularly in small samples, but it usually works quite well. The GS option requires over 100 iterations for the search and so can be computationally expensive.

Maximum Likelihood Estimation by Grid Search

When the ML and ORDER=2 options are specified on the AUTO command the model estimation considers maximizing the likelihood function under the assumption of normal disturbances. Schmidt [1971] discusses that the maximum likelihood estimators are those which minimize:

$$\sigma^2(\rho_1, \rho_2) / \left| \Omega^{-1} \right|^{1/N}$$

where

$$\left| \Omega^{-1} \right| = (1 + \rho_2)^2 \left[(1 - \rho_2)^2 - \rho_1^2 \right]$$

Estimation is by a grid search within the stability triangle as discussed above. An application can be found in Savin [1978].

Nonlinear Least Squares

The PAGAN and ORDER=2 options on the AUTO command gives estimation by a nonlinear least squares method that is described in the next section.
For the general estimation of models with autoregressive or moving average errors Pagan [1974] proposes the use of an iterative Gauss-Newton algorithm for the minimization of $S = v'v$. Using matrix notation the model with autoregressive errors can be expressed in the form:

$$v = M(\rho)(Y - X\beta)$$

where $\rho' = (\rho_1, \rho_2, \ldots, \rho_p)$

and the model with moving average errors can be expressed in the form:

$$v = M(\theta)^{-1}(Y - X\beta)$$

where $\theta' = (\theta_1, \theta_2, \ldots, \theta_q)$

M and M^{-1} are $N \times N$ lower triangular matrices. Specifically:

$$M(\rho) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \rho_1 & 1 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \rho_p & \cdots & \cdots & 1 \\ 0 & \rho_p & \cdots & \rho_1 \end{bmatrix}$$

Note that the implementation sets the pre-sample values of ε equal to zero.

Matrix differentiation gives expressions for the computation of first derivatives and these are then used in the updating steps of the Gauss-Newton estimation algorithm.

The convergence criteria is based on the relative change in the error sum of squares. Let $S^{(i)}$ be the error sum of squares at iteration i. The estimation converges when:

$$\left| S^{(i)} - S^{(i-1)} \right| / S^{(i-1)} \leq \frac{\delta}{1000}$$

where δ can be specified with the CONV= option and the default is $\delta = 0.001$.

AUTO COMMAND OPTIONS

In general, the format of the **AUTO** command is:

```
AUTO depvar indeps / options
```

where `depvar` is the dependent variable, `indeps` is a list of independent variables, and `options` is a list of desired options. Options as defined for **OLS** that are available are:

- ANOVA
- DUMP
- GF
- LININV
- LIST
- LOGINV
- LOGLIN
- LOGLOG
- MAX
- NOCONSTANT
- NOWIDE
- PCOR
- PCOV
- RESTRICT
- RSTAT
- WIDE
- BEG=, END=
- COEF=, COV=, PREDICT=, RESID=, STDERR= and TRATIO=.

Additional options available with the **AUTO** command are:

- **DLAG**
 Used with first-order models to tell SHAZAM that the first independent variable is a LAGged Dependent variable. With this option the estimated variances will be calculated using Dhrymes [1971, Theorem 7.1]. An example using this method can be found in Savin [1976].

- **DN**
 Computes the estimated variance of the regression line by Dividing the residual sum of squares by `N` instead of `N−K`. If the user believes that the model only has good large-sample properties and wants the maximum likelihood estimates of the variances, this option should be used.

- **DROP**
 DROPs the first observation in estimation. (In a second-order model, the first two observations will be dropped.) While this yields less efficient estimates, there are cases where this option might be chosen. If this option is not used, the beginning observations are saved with the usual transformation. See any good econometrics text, and Poirier [1978] for discussions of this. If the **DROP** option is used, the **ML** option may not be used.

- **GS**
 Uses a Grid Search to estimate ρ. For models with AR(1) errors 39 iterations will be required by a grid search. For models with AR(2) errors over 100 iterations will be required. The grid search will yield an accuracy of 0.01.
MISS Adjusts the maximum likelihood estimates for any **MISSing** observations that were deleted with **SKIPIF** commands. The method used is described in Savin and White [1978] and in Richardson and White [1979].

ML Does **Maximum Likelihood** estimation for models with first or second order autoregressive errors. A reference is Dhrymes [1971, Theorem 4.4]. For the model with AR(1) errors the estimation method is a modified Cochrane-Orcutt procedure as developed by Beach and MacKinnon [1978]. With the **GS** option a grid search is used. A model with AR(2) errors is specified with the **ORDER=2** option and the estimation uses a grid search. Note that, with the **ML** option, the **DN** option will automatically be in effect and the **DROP** option may not be used.

NOPITER Suppresses intermediate output from iterations.

PAGAN May be used with **ORDER=1** or **ORDER=2** to estimate the model using Pagan's [1974] procedure.

CONV= Used to set a **CONVergence** criterion. The default is .001. This option is ineffective for a grid search.

GAP= Provides an alternative way to indicate a single **GAP** in the data. It is used when the missing observations were not accounted for in the data. You should specify the observation number immediately before the gap. For example, **GAP=29** means that a gap exists in the data after observation 29. It will be assumed that only one observation is missing, unless the number of missing observations is specified with the **NMISS=** option.

ITER= May be used when doing an **ITERative** Cochrane-Orcutt procedure to control the number of iterations. If a value of **ITER=** is specified, this will be the maximum number of iterations allowed. **ITER=** should be a number between 2 and 99. The default is 19.

NMISS= Used with the **GAP=** option to indicate the **Number of MISSing** observations from the data. For example, **GAP=29 NMISS=3** means that 3 observations were missing from the data after observation 29. This option is not to be confused with the **MISS** option described above.
NUMARMA= Specifies the NUMber of AR or MA coefficients to be estimated if some of the coefficients are to be restricted to be zero. For example, when ORDER=4 is specified, but it is desired that the second autoregressive coefficient should be zero and not estimated then use NUMARMA=3 and in the line following the AUTO command include the 3 coefficients to be estimated. For example:

```
auto consume income / order=4 numar=3
1 3 4
```

If the NUMARMA= option is used with ORDER=2 then the PAGAN option must also be specified.

ORDER=n Used to estimate models with second or higher-ORDER autoregressive errors. If ORDER=2 is specified, an iterative Cochrane-Orcutt procedure is done unless the GS or ML options are also specified. The missing data options are not valid for ORDER=1 estimation.

If an ORDER larger than 2 is specified the model will be estimated using the least squares procedure described in Pagan [1974]. The DLAG, DROP, GAP, GS, MISS, ML, NMISS, RESTRICT, RHO and SRHO options are not permitted when ORDER is larger than 2. Also, the FC command will not work after an AUTO command that uses this option.

ORDER=--n If a negative ORDER is specified the model will be estimated using a moving-average error model instead of an autoregressive error model. A least squares procedure is used as described in Pagan [1974]. For example, to estimate a model with first-order moving average errors use the option ORDER=--1. The MISS, GAP, RHO, SRHO, DLAG, DROP, GS, ML and RESTRICT options are not permitted. The FC command will not work after an AUTO command that uses this option.

RHO= Allows the specification of any value of ρ desired for the regression. With the RHO= option neither a Cochrane-Orcutt nor a maximum likelihood estimation is done since SHAZAM already has the value of ρ. This is useful when ρ is already known as it eliminates expensive iterations.

SRHO= Used with the ORDER=2 and RHO= options when the Second-order ρ is to be specified for a model with AR(2) errors.
The available temporary variables on the **AUTO** command are: $ADR2, $DF, $ERR, $K, $LLF, $N, $R2, $RAW, $SIG2, $SSE, $SSR, $SST, $ZDF, $ZSSR and $ZSST.

With the **RSTAT** option the available temporary variables are: $DURH, $DW, $R2OP and $RHO.

For more information on temporary variables see the chapter **MISCELLANEOUS COMMANDS AND INFORMATION** and the chapter **ORDINARY LEAST SQUARES**.

EXAMPLES

The output below uses the Theil textile data set and shows the estimation results for a model with AR(1) errors. The estimation method is by an iterative Cochrane-Orcutt procedure with the modification that retains the first observation.

<table>
<thead>
<tr>
<th>AUTO CONSUME INCOME PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPENDENT VARIABLE = CONSUME</td>
</tr>
<tr>
<td>..NOTE..R-SQUARE,ANOVA,RESIDUALS DONE ON ORIGINAL VARS</td>
</tr>
<tr>
<td>LEAST SQUARES ESTIMATION 17 OBSERVATIONS</td>
</tr>
<tr>
<td>BY COCHRANE-ORCUTT TYPE PROCEDURE WITH CONVERGENCE = 0.00100</td>
</tr>
<tr>
<td>ITERATION</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>LOG L.F. = -51.3972 AT RHO = -0.19535</td>
</tr>
</tbody>
</table>

| ASYMPTOTIC ASYMPTOTIC ASYMPTOTIC |
| ESTIMATE VARIANCE ST.ERROR T-RATIO |
| RHO -0.19535 0.05658 0.23786 -0.82129 |

R-SQUARE = 0.9528 R-SQUARE ADJUSTED = 0.9461
VARIANCE OF THE ESTIMATE-SIGMA**2 = 29.986
STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.4759
SUM OF SQUARED ERRORS-SSE = 419.80
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -51.3972

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>COEFFICIENT</td>
<td>ERROR</td>
<td>14 DF P-VALUE</td>
<td>CORR. COEFFICIENT</td>
</tr>
<tr>
<td>INCOME</td>
<td>1.0650</td>
<td>.2282</td>
<td>4.667</td>
<td>.000 .780</td>
</tr>
<tr>
<td>PRICE</td>
<td>-1.3751</td>
<td>.7105E-01</td>
<td>-19.35</td>
<td>.000 -.982</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>129.62</td>
<td>23.05</td>
<td>5.624</td>
<td>.000 .833</td>
</tr>
</tbody>
</table>
When the ML option is chosen the method of estimation is a modified Cochrane-Orcutt procedure developed by Beach and MacKinnon [1978] and based on maximum likelihood estimation. Note that the DN option is automatically in effect when the ML option is chosen. The DROP option may not be used with the ML option. The output of the ML option with the RSTAT option is given below.

<table>
<thead>
<tr>
<th>AUTO CONSUME INCOME PRICE / ML RSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPENDENT VARIABLE = CONSUME</td>
</tr>
<tr>
<td>.NOTE..R-SQUARE,ANOVA,RESIDUALS DONE ON ORIGINAL VARS</td>
</tr>
<tr>
<td>DN OPTION IN EFFECT - DIVISOR IS N</td>
</tr>
</tbody>
</table>

MAXIMUM LIKELIHOOD ESTIMATION 17 OBSERVATIONS
BY COCHRANE-ORCUTT TYPE PROCEDURE WITH CONVERGENCE = 0.00100

<table>
<thead>
<tr>
<th>ITERATION</th>
<th>RHO</th>
<th>LOG L.F.</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>-51.6470</td>
<td>433.31</td>
</tr>
<tr>
<td>2</td>
<td>-0.18491</td>
<td>-51.3982</td>
<td>419.95</td>
</tr>
<tr>
<td>3</td>
<td>-0.19741</td>
<td>-51.3971</td>
<td>419.77</td>
</tr>
<tr>
<td>4</td>
<td>-0.19797</td>
<td>-51.3971</td>
<td>419.77</td>
</tr>
</tbody>
</table>

LOG L.F. = -51.3971 AT RHO = -0.19797

R-SQUARE = 0.9528 R-SQUARE ADJUSTED = 0.9461
VARIANCE OF THE ESTIMATE-SIGMA**2 = 24.692
STANDARD ERROR OF THE ESTIMATE-SIGMA = 4.9691
SUM OF SQUARED ERRORS-SSE= 419.77
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -51.3971

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>1.0650</td>
<td>.2067</td>
<td>5.152</td>
<td>.000 .809 .2395 .8154</td>
</tr>
<tr>
<td>PRICE</td>
<td>-1.3750</td>
<td>.6436E-01</td>
<td>-21.37</td>
<td>.000 -.985 -.9836 -.7801</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>129.61</td>
<td>20.88</td>
<td>6.209</td>
<td>.000 .856 .0000 .9636</td>
</tr>
</tbody>
</table>

DURBIN-WATSON = 1.8559 VON NEUMANN RATIO = 1.9719 RHO = -0.05282
RESIDUAL SUM = 1.0847 RESIDUAL VARIANCE = 24.761
SUM OF ABSOLUTE ERRORS= 73.221
R-SQUARE BETWEEN OBSERVED AND PREDICTED = 0.9527
RUNS TEST: 7 RUNS, 9 POSITIVE, 8 NEGATIVE, NORMAL STATISTIC = -1.2423
DURBIN H STATISTIC (ASYMPTOTIC NORMAL) = -1.1000
MODIFIED FOR AUTO ORDER=1
12. BOX-COX REGRESSIONS

"No model exists for him who seeks what he has never seen."
Paul Eluard
Artist

The **BOX** command provides features for estimation with Box-Cox transformations. References are Zarembka [1974, Chapter 3], Greene [2003, Chapter 9.3.2; 2000, Chapter 10.5], Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 12.5], Magee [1988], White [1972] and Savin and White [1978]. It is possible to restrict the exact power transformation on any of the variables by using the **LAMBDA** command. Any variable in the regression with non-positive values will automatically be restricted to be untransformed.

The Classical Box-Cox Model

For a variable \(Y = (Y_1 \ Y_2 \ldots \ Y_N)' \) consider the transformation:

\[
Y_t^{(\lambda)} = \begin{cases}
\frac{Y_t^\lambda - 1}{\lambda} & \lambda \neq 0 \\
\ln Y_t & \lambda = 0
\end{cases}
\]

The Box-Cox model (from Box and Cox [1964]) is written:

\[
Y^{(\lambda)} = X\beta + \varepsilon
\]

where \(X \) is a \((N \times K)\) matrix of the observations on the independent variables and \(\varepsilon \) is a \((N \times 1)\) vector of random disturbances with \(\text{E}(\varepsilon') = \sigma^2 I_N \).

The log-likelihood function is given by:

\[
L(\lambda, \beta, \sigma^2; Y, X) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} (Y^{(\lambda)} - X\beta)'(Y^{(\lambda)} - X\beta) + \ln J
\]

where

\[
J = \det \left[\frac{\partial Y^{(\lambda)}}{\partial Y} \right] = \prod_{t=1}^{N} Y_t^{\lambda - 1}
\]
is the Jacobian of the transformation on the dependent variable. Maximization of the above log-likelihood function with respect to \(\sigma^2 \) and \(\beta \) given \(\lambda \) gives the estimators:

\[
\hat{\beta}(\lambda) = (X'X)^{-1} X'Y^{(\lambda)} \quad \text{and} \quad \hat{\sigma}^2(\lambda) = \frac{1}{N} (Y^{(\lambda)} - X\hat{\beta}(\lambda))(Y^{(\lambda)} - X\hat{\beta}(\lambda)).
\]

Substitution gives the concentrated log-likelihood function:

\[
L^*(\lambda; Y, X) = -\frac{N}{2} \left[\ln(2\pi) + 1 \right] - \frac{N}{2} \ln \hat{\sigma}^2(\lambda) + (\lambda - 1) \sum_{t=1}^{N} \ln Y_t
\]

The first step of the estimation procedure is to find an estimate of \(\lambda \) to maximize \(L^* \). SHAZAM does this by an iterative algorithm. Then the estimate \(\tilde{\lambda} \) is used to obtain an estimate of \(\beta \) as:

\[
\tilde{\beta} = (X'X)^{-1} X'Y^{(\tilde{\lambda})}
\]

and the estimate of \(\sigma^2 \) is:

\[
\tilde{\sigma}^2 = \frac{1}{N - K} (Y^{(\tilde{\lambda})} - X\tilde{\beta})'(Y^{(\tilde{\lambda})} - X\tilde{\beta})
\]

When the \textbf{DN} option is used the divisor is \(N \) instead of \(N - K \). An estimate of the covariance matrix of \(\tilde{\beta} \) is:

\[
\tilde{\sigma}^2 (X'X)^{-1}
\]

Note that this covariance matrix gives conditional standard errors, conditional on \(\lambda = \tilde{\lambda} \). For discussion on conditional vs. unconditional standard errors see Judge, Hill, Griffiths, Lütkepohl and Lee [1988, pp.558-9].

The elasticities evaluated at sample means for the Box-Cox model (see Savin and White [1978]) are estimated as:

\[
E_k = \tilde{\beta}_k \bar{X}_k / \bar{Y}_{\tilde{\lambda}}
\]

See Poirier and Melino [1978] for the derivation of the change in the expected value of \(Y \) with respect to a given regressor when a Box-Cox transformation is used.
The Extended Box-Cox Model

The Box-Cox model can be extended to applications in which both the dependent and the set of independent variables are transformed in the same way. This model is written:

$$Y^{(\lambda)} = X^{(\lambda)} \beta + \varepsilon$$

where the same value of λ is used to transform all the variables in the model. In this case, the log-likelihood function is as previously given except the regressors are transformed in addition to the dependent variable. As before the model estimation proceeds by implementing an iterative procedure to find a maximizing value λ^*. This is then used to find parameter estimates β^*. In this model, the elasticities evaluated at the variable means are computed as:

$$E_k = \tilde{\beta}_k \frac{\bar{X}^{\lambda_k}}{\bar{Y}^{\lambda}}$$

The Box-Tidwell Model

A variation of the Box-Cox model involves no transformation of the dependent variable but each of the independent variables is transformed by a different λ. This model is known as the Box-Tidwell model (see Box and Tidwell [1962]) and is given by:

$$Y = \beta_0 + \beta_1 X_1^{(\lambda_1)} + \beta_2 X_2^{(\lambda_2)} + \ldots + \beta_k X_k^{(\lambda_k)} + \varepsilon$$

Since there is no transformation on the dependent variable the log-likelihood function for the Box-Tidwell model has no Jacobian term. After model estimation the elasticities are computed as:

$$E_k = \tilde{\beta}_k \frac{\bar{X}^{\lambda_k}}{\bar{Y}}$$

The Combined Box-Cox and Box-Tidwell Model

The FULL option on the BOX command implements combined Box-Cox and Box-Tidwell estimation by allowing all variables, dependent and independent, to be transformed by a different value of λ.
The Box-Cox Autoregressive Model

The Box-Cox autoregressive model (described in Savin and White [1978]) is given by:

\[
Y_t^{(\lambda)} = X_t' \beta + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \rho \varepsilon_{t-1} + v_t, \quad |\rho| < 1,
\]

and \(E(v_t^2) = \sigma_v^2 \)

The log-likelihood function is:

\[
L(\lambda, \rho, \beta, \sigma_v^2; Y, X) = -\frac{N}{2} \ln \left(2\pi \sigma_v^2\right) + \frac{1}{2} \ln \left(1 - \rho^2\right) - \frac{1}{2\sigma_v^2} (Y^{(\lambda)} - X\beta)' \Omega^{-1} (Y^{(\lambda)} - X\beta) + \ln J
\]

where \(\Omega^{-1} = E[\varepsilon \varepsilon']^{-1} = \)

\[
\begin{bmatrix}
1 & -\rho & 0 & \cdots & 0 \\
-\rho & 1 + \rho^2 & -\rho & \cdots & 0 \\
0 & -\rho & 1 + \rho^2 & -\rho & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 + \rho^2 & -\rho \\
& & & & & \rho
\end{bmatrix}
\]

The Jacobian of the transformation on the dependent variable is:

\[
J = \det \left[\frac{\partial Y^{(\lambda)'}}{\partial Y} \right]
\]

where

\[
\begin{bmatrix}
\frac{\partial Y^{(\lambda)'}}{\partial Y}
\end{bmatrix} =
\begin{bmatrix}
Y_1^{\lambda-1} & 0 & 0 & \cdots & 0 \\
\rho Y_2^{\lambda-1} & Y_2^{\lambda-1} & 0 & \cdots & 0 \\
\rho^2 Y_3^{\lambda-1} & \rho Y_3^{\lambda-1} & Y_3^{\lambda-1} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{N-1} Y_N^{\lambda-1} & \rho^{N-2} Y_N^{\lambda-1} & \cdots & \cdots & Y_N^{\lambda-1}
\end{bmatrix}
\]
This is an N x N triangular matrix and the determinant of a triangular matrix is the product of the diagonal elements. Therefore:

\[J = \prod_{t=1}^{N} Y_t^{\lambda - 1} \]

Maximizing the log-likelihood function with respect to \(\beta \) and \(\sigma^2_v \) given both \(\lambda \) and \(\rho \) yields:

\[\hat{\beta}(\lambda, \rho) = \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} Y^{(\lambda)} \quad \text{and} \]

\[\hat{\sigma}^2_v(\lambda, \rho) = \frac{1}{N} \left[Y^{(\lambda)} - X\hat{\beta}(\lambda, \rho) \right]' \Omega^{-1} \left[Y^{(\lambda)} - X\hat{\beta}(\lambda, \rho) \right] \]

Substitution of these estimators into the log-likelihood function gives the concentrated log-likelihood function:

\[L^*(\lambda, \rho; Y, X) = -\frac{N}{2} \left\{ \ln(2\pi) + 1 \right\} - \frac{N}{2} \ln \hat{\sigma}^2_v(\lambda, \rho) + \frac{1}{2} \ln \left(1 - \rho^2 \right) + (\lambda - 1) \sum_{t=1}^{N} \ln Y_t \]

A grid search is used to find estimates \(\tilde{\lambda} \) and \(\tilde{\rho} \) that maximize \(L^* \). Then an estimate for \(\beta \) is obtained as:

\[\tilde{\beta} = \left(X' \tilde{\Omega}^{-1} X \right)^{-1} X' \tilde{\Omega}^{-1} Y^{(\tilde{\lambda})} \]

and the estimated covariance matrix of coefficients conditional on \(\lambda \) is given by:

\[\tilde{\sigma}^2_v \left(X' \tilde{\Omega}^{-1} X \right)^{-1} \]

where

\[\tilde{\sigma}^2_v = \frac{1}{N - K} (Y^{(\tilde{\lambda})} - X\tilde{\beta})' \tilde{\Omega}^{-1} (Y^{(\tilde{\lambda})} - X\tilde{\beta}) \]

When the DN option is used the divisor is N instead of N–K.
The Extended Box-Cox Autoregressive Model

The extended Box-Cox autoregressive model that transforms all variables by the same \(\lambda \) can be estimated in a similar fashion to the procedure described above. The extended Box-Cox autoregressive model requires the use of the AUTO and ALL options on the BOX command.

BOX COMMAND OPTIONS

In general, the format of the BOX command is:

```
BOX depvar indeps / options
```

where `depvar` is the dependent variable, `indeps` is a list of independent variables, and `options` is a list of desired options. Some of the available options on the BOX command are slightly different than those for the OLS command. In particular, the NOCONSTANT option produces a modified transformation (see details below), since the normal transformation requires an intercept in the regression. Options as defined for OLS that are available are:

- ANOVA, GF, LIST, MAX, PCOR, PCOV, RSTAT, BEG=, END=, COV=, PREDICT= and RESID=

Additional options available for use with the BOX command are:

ACCUR Normally, SHAZAM will estimate \(\lambda \) to an ACCURacy of 0.01. However, if this option is used, SHAZAM will iterate to an ACCURacy of 0.001 at some increase in computation time.

ALL Used to extend the Box-Cox model so that ALL variables receive the same power transformation (unless restricted). Without this option only the dependent variable is transformed. The extended Box-Cox model is far more difficult to estimate than the classical model. For example, the classical model usually requires only four iterations. The ALL option often requires twenty iterations.

AUTO Simultaneously estimate \(\lambda \) and the first-order AUTOcorrelation parameter \(\rho \). The method is that of Savin and White [1978]. This option is very slow as over 100 iterations are required. An accuracy of 0.01 is
obtained for λ and ρ (the ACCUR option is not available with this option). When using this option, the DROP, NMISS=, and GAP= options described in the chapter on AUTOCORRELATION MODELS may be used. The RHO= option described below can also be used. The λ range for the AUTO option is preset at $(-2, 3.5)$ and may not be altered. It is important to check for corner solutions.

DN
Uses a divisor of N instead of $N-K$ when estimating the error variance.

DUMP
Used with the AUTO option to get some intermediate output on the iterations to be DUMPed. This output is usually of little value, but sometimes contains useful information on the grid search.

FULL
Attempts a combined Box-Cox and Box-Tidwell estimation so that all variables in the equation have different λs. This option can be rather slow as many iterations are required. The warning on Box-Tidwell regressions also applies for the FULL option. In fact, overflows are quite common with this option so it should be used with care. RESTRICT commands are not permitted. The ALL, AUTO, LAMBDA=, LAMS=, LAME= and LAMI= options must not be used with the TIDWELL or FULL options.

NOCONSTANT
Estimates a model with no intercept. The user should be aware that the Box-Cox model is not well defined for models without an intercept, and the model is generally not scale-invariant. The transformation that is used on this option is the one suggested by Zarembka [1974] so that $X_i(\lambda) = X_i^\lambda / \lambda$ for $\lambda \neq 0$. A further result is that the likelihood function is not continuous at $\lambda = 0$; SHAZAM will use a value of 0.01 instead of 0.0. A Golden Section search algorithm will be used.

RESTRICT
Forces linear parameter restrictions. The restrictions are specified with LAMBDA and/or RESTRICT commands as shown later in this chapter. The RESTRICT option is not available with the FULL or TIDWELL options.

TIDWELL
Does a Box-TIDWELL regression instead of a Box-Cox regression. Only the independent variables will be transformed and each variable will have a different λ. For details on the method see Box and Tidwell [1962]. All independent variables must be strictly positive for this technique. Users should be aware that, quite frequently, the Box-Tidwell method will not converge, thus causing the run to be terminated unsuccessfull. This happens most often in small samples where there is a high variance
in one of the parameters. If this happens, the run might be successful if the data is scaled to a lower range (for example, divide all variables by 100). RESTRICT commands are not permitted. The ALL, AUTO, LAMBDAN=, LAMS=, LAME= and LAMI= options must not be used with the TIDWELL or FULL options.

UT
UnTransforms the observed and predicted dependent variables for purposes of computing and plotting the residuals. All values will then be in their original form. This is a useful option since the transformed residuals and predicted values usually are difficult to interpret. However, this option will raise computation time somewhat since an extra pass through the data is required. In addition, the untransformed residuals will no longer necessarily have a zero mean. Note that this option does not affect the regression results. Only the residual listing will be affected.

COEF=
Saves the COEFFicients, the λs for each independent variable and the dependent variable, and ρ if the AUTO option is used.

LAMBDA=
Used to specify the value of LAMBDAN desired by the user. Expensive iterations are eliminated with this option.

LAMS=
LAME=
LAMI=
These options are used to do a manual grid test for λ. The Starting value of LAMbdan (LAMS=), the Ending value of LAMbdan (LAME=) and an Increment (LAMI=) should be specified. When the optimal λ has been determined it can be specified on the LAMBNDA= option. The manual grid search is rarely needed. It may be necessary if the iterative procedure fails. The manual grid search is not available when using the AUTO option.

RHO=
Specifies a fixed value for RHO to be used when the AUTO option is specified.

The available temporary variables on the BOX command are:

$ADR2, $ANF, $DF, $DW, $ERR, $K, $LLF, $N, $R2, $R2OP, $RAW, $RHO, $SIG2, $SSE, $SSR, $SST, $ZANF, $ZDF, $ZSSR and $ZSST.

For more information on temporary variables see the chapter MISCELLANEOUS COMMANDS AND INFORMATION and the chapter ORDINARY LEAST SQUARES.
As noted above, SHAZAM uses iterative methods to estimate Box-Cox regressions. In some cases the program will fail during the iterations with a floating-point overflow. If this happens, the data could be scaled by dividing all variables by a constant such as 100 or 1000. This is usually not a problem, however, unless the magnitude of the data is initially very large. Since many iterations are necessary for Box-Cox regressions, the costs will rise substantially for large sample sizes. The user should also be aware that the maximum likelihood methods used here are not for small samples, and the use of these techniques with small samples may yield nonsense results.

EXAMPLE

The output that follows shows the use of the BOX command with the Theil textile data set.

```
<table>
<thead>
<tr>
<th>BOX CONSUME INCOME PRICE / DN ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPENDENT VARIABLE = CONSUME</td>
</tr>
<tr>
<td>DN OPTION IN EFFECT = DIVISOR IS N</td>
</tr>
<tr>
<td>BOX-COX REGRESSION = 17 OBSERVATIONS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITERATION</th>
<th>LAMBDA</th>
<th>LOG-L.F.</th>
<th>GRADIENT</th>
<th>R-SQUARE</th>
<th>SSE</th>
<th>SSE/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.000</td>
<td>-46.5862</td>
<td>.466329E-01</td>
<td>.9744</td>
<td>.13613E-01</td>
<td>.80077E-03</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>-51.6471</td>
<td>-.5.06084</td>
<td>.9513</td>
<td>.433.31</td>
<td>25.489</td>
</tr>
<tr>
<td>3</td>
<td>-.618</td>
<td>-46.4049</td>
<td>-.3.23983</td>
<td>.9762</td>
<td>.31739E-04</td>
<td>.18670E-05</td>
</tr>
<tr>
<td>4</td>
<td>-1.000</td>
<td>-48.0606</td>
<td>4.33477</td>
<td>.9722</td>
<td>.92261E-06</td>
<td>.54271E-07</td>
</tr>
<tr>
<td>5</td>
<td>-.382</td>
<td>-46.0401</td>
<td>3.26927</td>
<td>.9767</td>
<td>.30541E-03</td>
<td>.17965E-04</td>
</tr>
<tr>
<td>6</td>
<td>-.236</td>
<td>-46.0919</td>
<td>-.354947</td>
<td>.9762</td>
<td>.12787E-02</td>
<td>.75217E-04</td>
</tr>
<tr>
<td>7</td>
<td>-.472</td>
<td>-46.1138</td>
<td>.927319E-01</td>
<td>.9766</td>
<td>.37579E-03</td>
<td>.20954E-04</td>
</tr>
<tr>
<td>8</td>
<td>-.326</td>
<td>-46.0353</td>
<td>.538015</td>
<td>.9766</td>
<td>.52622E-03</td>
<td>.30954E-04</td>
</tr>
<tr>
<td>9</td>
<td>-.292</td>
<td>-46.0476</td>
<td>-.358561</td>
<td>.9765</td>
<td>.73786E-03</td>
<td>.43404E-04</td>
</tr>
<tr>
<td>10</td>
<td>-.348</td>
<td>-46.0355</td>
<td>-.253926</td>
<td>.9766</td>
<td>.42730E-03</td>
<td>.25135E-04</td>
</tr>
<tr>
<td>11</td>
<td>-.361</td>
<td>-46.0346</td>
<td>.861095E-01</td>
<td>.9766</td>
<td>.37579E-03</td>
<td>.22106E-04</td>
</tr>
<tr>
<td>12</td>
<td>-.339</td>
<td>-46.0336</td>
<td>.457475E-01</td>
<td>.9766</td>
<td>.46264E-03</td>
<td>.27214E-04</td>
</tr>
<tr>
<td>13</td>
<td>-.353</td>
<td>-46.0337</td>
<td>.536509E-02</td>
<td>.9766</td>
<td>.40683E-03</td>
<td>.23931E-04</td>
</tr>
<tr>
<td>14</td>
<td>-.344</td>
<td>-46.0335</td>
<td>.302815E-01</td>
<td>.9766</td>
<td>.44046E-03</td>
<td>.25910E-04</td>
</tr>
<tr>
<td>15</td>
<td>-.342</td>
<td>-46.0335</td>
<td>-.195690E-01</td>
<td>.9766</td>
<td>.44880E-03</td>
<td>.26400E-04</td>
</tr>
<tr>
<td>16</td>
<td>-.346</td>
<td>-46.0336</td>
<td>-.136884E-01</td>
<td>.9766</td>
<td>.43538E-03</td>
<td>.25611E-04</td>
</tr>
<tr>
<td>17</td>
<td>-.350</td>
<td>-46.0336</td>
<td>.235114E-01</td>
<td>.9766</td>
<td>.41708E-03</td>
<td>.24534E-04</td>
</tr>
</tbody>
</table>

BOX-COX REGRESSION FOR LAMBDA = -.350000

R-SQUARE = .9766  R-SQUARE ADJUSTED = .9733
VARIANCE OF THE ESTIMATE-SIGMA**2 = .24534E-04
STANDARD ERROR OF THE ESTIMATE-SIGMA = .49532E-02
SUM OF SQUARED ERRORS-SSE = .41708E-03
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -46.0336

| ASYMPOTIC CONDITIONAL BOX-COX |
|-------------------------------|-----------------|------------------|------------------------|
| VARIABLE | ESTIMATED | STANDARD | T-RATIO | PARTIAL STANDARDIZED | ELASTICITY | CORR. COEFFICIENT | AT MEANS |
| NAME    | COEFFICIENT | ERROR | ***** DF | P-VALUE | CORR. COEFFICIENT |  |
| INCOME  | 1.1535   | .1260 | 9.152 | .000 | .926 | .3493 | 1.2665 |
| PRICE   | -.6895 | .2606E-01 | -26.48 | .000 | -.990 | -1.0106 | -.8413 |
```
The **ALL** option is used and so SHAZAM transforms all the variables by the same \(\lambda \). A value of \(\lambda = 1 \) gives a linear model and a value of \(\lambda = 0 \) gives a double log model.

Let \(L^{(i)} \) be the value of the log-likelihood function and let \(\tilde{\lambda}^{(i)} \) be the estimate of \(\lambda \) at iteration \(i \). On the above estimation output the **GRADIENT** of the log-likelihood function with respect to \(\lambda \) is approximated as:

\[
\frac{L^{(i)} - L^{(i-1)}}{\tilde{\lambda}^{(i)} - \tilde{\lambda}^{(i-1)}}
\]

Likelihood ratio tests can be used to test hypotheses about the values of \(\lambda \). For a test of the linear model the test statistic is:

\[
2\left[L(\tilde{\lambda}) - L(\lambda = 1) \right]
\]

This can be compared with a \(\chi^2 \) distribution. From the above output the test statistic is computed as:

\[
2(-46.0336 + 51.647054) = 11.23
\]

From statistical tables the 5% critical value is 3.84 and the 1% critical value is 6.64. The test statistic exceeds these critical values and, therefore, the linear model is rejected.

BOX-COX WITH RESTRICTIONS

The user may want to restrict some of the \(\lambda \)s. When the **RESTRICT** option is used on the **BOX** command the **LAMBDA** command can be used to impose the restrictions. If the **ALL** option is not in effect, any of the right-hand side variables may be restricted to any \(\lambda \). Those that are unrestricted will remain untransformed. If **RESTRICT** commands are used they must follow all **LAMBDA** commands (these are optional). For details on the **RESTRICT** command see the section **RESTRICTED LEAST SQUARES** in the chapter **ORDINARY LEAST SQUARES**. The **END** command should follow all the **LAMBDA** and **RESTRICT** commands. No \(\lambda \) may be restricted if the **TIDWELL** or **FULL** options are being used.

The general command format for restricted estimation is:

BOX depvar indeps / RESTRICT options
LAMBDA var1=value1 var2=value2 ...
The SHAZAM output that follows shows estimation results when the value of \(\lambda \) for \(\text{INCOME} \) is restricted to \(\lambda = 0 \).

| BOX CONSUME INCOME PRICE / DN ALL RESTRICT |
| _LAMBDA INCOME=0 |
| _END |

DEPENDENT VARIABLE = CONSUME
DN OPTION IN EFFECT - DIVISOR IS N

BOX-COX REGRESSION --- VARIABLE LAMBDA INCOME .0000

<table>
<thead>
<tr>
<th>ITERATION LAMBDA</th>
<th>LOG-L.F.</th>
<th>GRADIENT</th>
<th>R-SQUARE</th>
<th>SSE</th>
<th>SSE/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.000</td>
<td>-46.5862</td>
<td>.466329E-01</td>
<td>.9744</td>
<td>.13613E-01</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>-51.5842</td>
<td>-4.99795</td>
<td>.9516</td>
<td>430.12</td>
</tr>
<tr>
<td>3</td>
<td>-.618</td>
<td>-46.3158</td>
<td>-3.25604</td>
<td>.9764</td>
<td>.31408E-04</td>
</tr>
<tr>
<td>4</td>
<td>-1.000</td>
<td>-47.8558</td>
<td>4.03182</td>
<td>.9728</td>
<td>.90064E-06</td>
</tr>
<tr>
<td>5</td>
<td>-.382</td>
<td>-46.0048</td>
<td>2.99505</td>
<td>.9768</td>
<td>.30414E-03</td>
</tr>
<tr>
<td>6</td>
<td>-.236</td>
<td>-46.0778</td>
<td>-.500439</td>
<td>.9763</td>
<td>.12766E-02</td>
</tr>
<tr>
<td>7</td>
<td>-.472</td>
<td>-46.0605</td>
<td>-.73176E-01</td>
<td>.9768</td>
<td>.12683E-03</td>
</tr>
<tr>
<td>8</td>
<td>-.326</td>
<td>-46.0092</td>
<td>.351498</td>
<td>.9766</td>
<td>.52461E-03</td>
</tr>
<tr>
<td>9</td>
<td>-.416</td>
<td>-46.0168</td>
<td>.842899E-01</td>
<td>.9768</td>
<td>.21753E-03</td>
</tr>
<tr>
<td>10</td>
<td>-.361</td>
<td>-46.0030</td>
<td>.248213</td>
<td>.9767</td>
<td>.37440E-03</td>
</tr>
<tr>
<td>11</td>
<td>-.348</td>
<td>-46.0040</td>
<td>-.803312E-01</td>
<td>.9767</td>
<td>.42582E-03</td>
</tr>
<tr>
<td>12</td>
<td>-.369</td>
<td>-46.0032</td>
<td>-.417153E-01</td>
<td>.9767</td>
<td>.34581E-03</td>
</tr>
<tr>
<td>13</td>
<td>-.356</td>
<td>-46.0032</td>
<td>-.311991E-02</td>
<td>.9767</td>
<td>.39325E-03</td>
</tr>
<tr>
<td>14</td>
<td>-.364</td>
<td>-46.0030</td>
<td>-.270137E-01</td>
<td>.9767</td>
<td>.36321E-03</td>
</tr>
<tr>
<td>15</td>
<td>-.366</td>
<td>-46.0030</td>
<td>.207597E-01</td>
<td>.9767</td>
<td>.35646E-03</td>
</tr>
<tr>
<td>16</td>
<td>-.363</td>
<td>-46.0030</td>
<td>.151163E-01</td>
<td>.9767</td>
<td>.36744E-03</td>
</tr>
<tr>
<td>17</td>
<td>-.360</td>
<td>-46.0030</td>
<td>-.120099E-01</td>
<td>.9767</td>
<td>.37689E-03</td>
</tr>
</tbody>
</table>

BOX-COX REGRESSION FOR LAMBDA = - .360000

R-SQUARE = .9767 R-SQUARE ADJUSTED = .9734
VARIANCE OF THE ESTIMATE-SIGMA**2 = .22170E-04
STANDARD ERROR OF THE ESTIMATE-SIGMA = .47085E-02
SUM OF SQUARED ERRORS-SSE= .37689E-03
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -46.0030

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT</th>
<th>AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>.21745</td>
<td>.2365E-01</td>
<td>9.196</td>
<td>.000</td>
<td>.8926</td>
<td>.3504</td>
</tr>
<tr>
<td>PRICE</td>
<td>-.68670</td>
<td>.2587E-01</td>
<td>-26.54</td>
<td>.000</td>
<td>-.9990</td>
<td>-1.0113</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>2.7933</td>
<td>.1107</td>
<td>25.23</td>
<td>.000</td>
<td>.9889</td>
<td>.0000</td>
</tr>
</tbody>
</table>
13. COINTEGRATION AND UNIT ROOT TESTS

"It is interesting that Humans try to find Meaningful Patterns in things that are essentially random."

Mr. Data
Star Trek, 1992

UNIT ROOT TESTS

Dickey-Fuller Unit Root Tests

The finding of a unit root in a time series indicates nonstationarity which has implications for economic theory and modelling. Test statistics can be based on the OLS estimation results from a suitably specified regression equation. For a time series Y_t two forms of the "augmented Dickey-Fuller" regression equations are:

\[
\begin{align*}
\Delta Y_t &= \alpha_0 + \alpha_1 Y_{t-1} + \sum_{j=1}^{p} \gamma_j \Delta Y_{t-j} + \varepsilon_t \\
\Delta Y_t &= \alpha_0 + \alpha_1 Y_{t-1} + \alpha_2 t + \sum_{j=1}^{p} \gamma_j \Delta Y_{t-j} + \varepsilon_t
\end{align*}
\]

where ε_t for $t = 1, \ldots, N$ is assumed to be Gaussian white noise. Equation (1) is with-constant, no-trend and (2) is with-constant, with-trend. The number of lagged terms p is chosen to ensure the errors are uncorrelated. The test statistics calculated are:

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>Test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1 = 0$ in (1)</td>
<td>(i) $N \hat{\alpha}_1$ z-test</td>
</tr>
<tr>
<td>$\alpha_1 = 0$ in (1)</td>
<td>(ii) t-ratio τ-test</td>
</tr>
<tr>
<td>$\alpha_0 = \alpha_1 = 0$ in (1)</td>
<td>F-test Φ_1 Unit root test (zero drift)</td>
</tr>
</tbody>
</table>
When $\alpha_1 = 0$ the time series Y_t is nonstationary so that standard asymptotic analysis cannot be used to obtain the distributions of the test statistics. Various researchers have designed Monte Carlo experiments to generate critical values that can be used for testing purposes (see Fuller [1976], Dickey and Fuller [1981], Guilkey and Schmidt [1989], and Davidson and MacKinnon [1993]). The SHAZAM output reports asymptotic critical values.

The z-test depends on p (see the remarks in Davidson and MacKinnon [1993]) and, therefore, the SHAZAM output gives the z-test only when $p=0$. As a practical consideration, when $p > 0$, the treatment of initial values will affect the parameter estimates. In SHAZAM, the initial observations are deleted. Another method, that does not affect the asymptotic results, is to set the initial values of the ΔY_{t-j} to zero. Some researchers use the Akaike (AIC) and the Schwarz (SC) information criteria as a guide for selection of p and these statistics are reported on the SHAZAM output.

Phillips-Perron Unit Root Tests

As an alternative to the inclusion of lag terms to allow for serial correlation the Phillips-Perron method is to use a non-parametric correction for serial correlation. The approach is to first calculate the above unit root tests from regression equations with $p=0$. The statistics are then transformed to remove the effects of serial correlation on the asymptotic distribution of the test statistic. The critical values are the same as those used for the Dickey-Fuller tests. The formula for the transformed test statistics are listed in Perron [1988, Table 1, p.308-9]. The Newey and West [1987] method is used to construct an estimate of the error variance from the estimated residuals $\hat{\epsilon}_t$ as:

$$
\frac{1}{N} \sum_{t=1}^{N} \hat{\epsilon}_t^2 + \frac{2}{N} \sum_{s=1}^{l} \omega(s, l) \sum_{t=s+1}^{N} \hat{\epsilon}_t \hat{\epsilon}_{t-s}
$$

where l is a truncation lag parameter and $\omega(s,l)$ is a window. SHAZAM uses a window choice of: $\omega(s,l) = 1 - s/(l+1)$

The selection of l is an important consideration and further discussion is available in Phillips [1987] and Perron [1988]. The **ARIMA** command (see the chapter **ARIMA MODELS**) can be used to inspect the time series properties of the variable to guide in the
choice of the lag order. By default SHAZAM sets the order as the highest significant lag order from either the autocorrelation function or the partial autocorrelation function of the first differenced series.

TESTS FOR COINTEGRATION

An approach to testing for cointegration (or evidence of a long run relationship between non-stationary variables) is to construct test statistics from the residuals of a cointegrating regression. With \(M \) time series \(Y_{t1}, \ldots, Y_{tM} \) each of which is I(1) (integrated of order 1), two forms of the cointegrating regression equations are:

\[
\begin{align*}
(A) \quad Y_{t1} &= \beta_0 + \sum_{j=2}^{M} \beta_j Y_{tj} + u_t \\
(B) \quad Y_{t1} &= \beta_0 + \beta_1 t + \sum_{j=2}^{M} \beta_j Y_{tj} + u_t
\end{align*}
\]

Equation (A) is no-trend and equation (B) is with-trend. The choice of regressand is arbitrary and different choices can be considered. A test for no cointegration is given by a test for a unit root in the estimated residuals \(\hat{u}_t \). The augmented Dickey-Fuller regression equation is:

\[
\Delta \hat{u}_t = \alpha \hat{u}_{t-1} + \sum_{j=1}^{P} \phi_j \Delta \hat{u}_{t-j} + v_t
\]

Test statistics are (i) \(N \hat{\alpha} \) (the z-test) and (ii) a t-ratio test for \(\alpha = 0 \) (the \(\tau \)-test). Alternatively, Phillips unit root test statistics can be constructed that use a non-parametric correction for serial correlation. Sources of critical values include Phillips and Ouliaris [1990], MacKinnon [1991] and Davidson and MacKinnon [1993]. The SHAZAM output reports asymptotic critical values obtained from Davidson-MacKinnon. Significant negative test statistics suggest rejection of the unit root hypothesis and evidence for cointegration.

COINT COMMAND OPTIONS

In general, the format of the COINT command is:

COINT vars / options
where *vars* is a list of variable names and *options* is a list of desired options. The following options are available on the **COINT** command:

DN
- Uses a divisor of N, rather than N−K (where K is the number of regressors), when estimating the variance used in calculating the t-statistics. The F-tests are computed with the standard finite sample adjustments.

DUMP
- Gives output of interest to SHAZAM consultants.

LOG
- Takes logs of the data.

MAX
- Gives more detailed output including the correlogram of the first differenced series, the estimated lag coefficients of the augmented Dickey-Fuller regressions, and the parameter estimates of the cointegrating regressions.

BEG_comma_END
- Specifies the **BEG**inning and **END**ing observations to be used in the calculations. This option overrides the **SAMPLE** command and defaults to the sample range in effect.

NDIFF
- Specifies the order of differencing to transform the data.

NLAG
- Specifies the number of lag terms in the augmented Dickey-Fuller regressions or the truncation lag parameter for the Phillips tests. If this is not specified then the order is set as the highest significant lag order (using an approximate 95% confidence interval) from either the autocorrelation function or the partial autocorrelation function of the first differenced series (up to a maximum lag order of √N).

RESID
- Specifies a matrix to save the residuals from the regression equations used for the unit root tests. The first column is the residuals from the constant, no trend regression and the second column is the residuals from the constant, trend regression for the first series. The third and fourth column are the residuals for the second series (if requested). For example, to inspect the ACF of the residuals the following SHAZAM commands could be used.
s
ample
1
17
coint
consume
price
/ nlag=2
resid=emat

* Adjust the sample period
sample
4
17
do
#=1,4
matrix
e=emat(0,#)
arima
e
endo

SIGLEVEL= Specifies the significance level for the critical values. The available choices are 1, 5 and 10. The default is SIGLEVEL=10 for 10% critical values.

TESTSTAT= Saves the test statistics in the variable specified.

TYPE= Specifies the type of tests to calculate. The available options are:

DF for augmented Dickey-Fuller unit root tests. This is the default.
PP for Phillips-Perron unit root tests.
RESD for Dickey-Fuller tests on the residuals of cointegrating regressions.
RESP for Phillips tests on the residuals of cointegrating regressions.

For the cointegrating regressions the first variable given in the variable list for the COINT command is used as the regressand. Note that when the TYPE=PP or TYPE=RESP options are requested and the truncation lag order is set to 0 (NLAG=0) then the Dickey-Fuller unit root tests are calculated.

EXAMPLES

An example of Dickey-Fuller unit root tests for the Theil textile data is shown in the output:

```
_COINT CONSUME PRICE

...NOTE..TEST LAG ORDER AUTOMATICALLY SET

TOTAL NUMBER OF OBSERVATIONS = 17

VARIABLE : CONSUME
DICKEY-FULLER TESTS - NO.LAGS = 2
NO.OBS = 14
```
In the above example the lag order p for the augmented Dickey-Fuller regression is set automatically (the method is described in the NLAG= option). For the CONSUME variable 2 lags were included and for the PRICE variable no lags were included. Note that the z-test is only reported when p = 0. In all cases, the test statistic is not significant at the 10% level and therefore the null hypothesis is not rejected. For example, for the time series CONSUME, for the regression equation with constant and trend, the t-ratio test for $\alpha_1 = 0$ is -1.4131 which exceeds the critical value of -3.13. The listing shows that the tests for $A(0)=A(1)=A(2)=0$ and $A(1)=A(2)=0$ in the regression equation with constant and trend are not significant at the 10% level for any of the variables. Also, the Φ_1 test statistics for $A(0)=A(1)=0$ in the regression equation with constant and no trend do not exceed the critical values for the time series studied. The conclusion is that the null hypothesis of a unit root cannot be rejected for the CONSUME and PRICE time series.

The user should then verify that Dickey-Fuller tests on the first differences (not reported here) show stationarity so that the evidence is that the two time series are I(1). Unit root
tests on first differences can be obtained by using the NDIFF=1 option on the COINT command. Also, the sensitivity of the test results to different choices for the NLAG= option may be useful to examine. On the SHAZAM output the AIC test is the Akaike information criteria and the SC test is the Schwarz criteria. Another thing to consider is that, for macroeconomic time series, the LOG option may be sensible to use.

To evaluate whether a linear combination of the variables is stationary cointegrating regressions can be estimated as:

```
|_COINT CONSUME PRICE / TYPE=RESD

...NOTE..TEST LAG ORDER AUTOMATICALLY SET

COINTEGRATING REGRESSION - CONSTANT, NO TREND NO.OBS = 17
REGRESSAND : CONSUME
R-SQUARE = .8961 DURBIN-WATSON = 1.191
DICKEY-FULLER TESTS ON RESIDUALS - NO.LAGS = 0 M = 2

TEST ASY. CRITICAL
STATISTIC VALUE 10%
---------------------------------------------------------------------------
NO CONSTANT, NO TREND
Z-TEST -9.8313 -17.1 AIC = 4.035
T-TEST -2.3828 -3.04 SC = 4.083
---------------------------------------------------------------------------

COINTEGRATING REGRESSION - CONSTANT, TREND NO.OBS = 17
REGRESSAND : CONSUME
R-SQUARE = .8963 DURBIN-WATSON = 1.214
DICKEY-FULLER TESTS ON RESIDUALS - NO.LAGS = 0 M = 2

TEST ASY. CRITICAL
STATISTIC VALUE 10%
---------------------------------------------------------------------------
NO CONSTANT, NO TREND
Z-TEST -9.9990 -23.4 AIC = 4.040
T-TEST -2.4364 -3.50 SC = 4.088
---------------------------------------------------------------------------
```

The output reports the R² and the Durbin-Watson test statistic from the cointegrating regressions. A high R² value and a low Durbin-Watson value is evidence of cointegration (for more discussion see Engle and Granger [1987]). The test statistics on the regression residuals can be compared with the critical values that are reported on the SHAZAM output. The results show that the null hypothesis of non-stationarity cannot be rejected. This suggests that the CONSUME and PRICE variables are not cointegrated.
14. DIAGNOSTIC TESTS

"That is a question which has puzzled many an expert, and why? Because there was no reliable test. Now we have the Sherlock Holmes test, and there will no longer be any difficulty."

Holmes to Watson in "A Study in Scarlet" by A. Conan Doyle

SHAZAM can perform a number of diagnostic tests after estimating a single-equation regression model including tests on recursive residuals, Goldfeld-Quandt tests, Chow tests, RESET specification error tests, and tests for autocorrelation and heteroskedasticity. The DIAGNOS command is used for these tests and many other statistics. Discussion and examples are available in good econometrics textbooks such as Greene [2003], Gujarati [2003] or Wooldridge [2006]. Other references are: Harvey [1990, Chapter 5]; Godfrey, McAleer, and McKenzie [1988]; Zarembka [1974, Chapter 1]; Breusch and Pagan [1979]; and Pagan and Hall [1983].

DIAGNOS COMMAND OPTIONS

The DIAGNOS command can be used following an OLS command. In general, the format of the DIAGNOS command is:

```
OLS depvar indeps
DIAGNOS / options
```

where options is a list of desired options. The options are summarized below and then are more fully described and demonstrated in the EXAMPLES section that follows.

The available options on the DIAGNOS command are:

- **ACF**
 - Prints the AutoCorrelation Function of residuals and associated test statistics.

- **BACKWARD**
 - Used with the RECUR option to compute BACKWARDS recursive residuals.
BOOTLIST Used with the **BOOTSAMP=** option to print the entire list of Bootstrapped coefficients for every generated sample. This could generate a lot of output.

CHOWTEST Produces a set of sequential **CHOW TEST** statistics and sequential Goldfeld-Quandt Test statistics which split the sample of dependent and independent variables in 2 pieces at every possible point. Some users may wish to sort the data first as suggested by Goldfeld and Quandt [1972]. It also computes some recursive residuals test statistics. Also see the **CHOWONE=**, **GQOBS=** and **MHET=** options.

CTEST Produces Pinkse's [1996] C-test for serial independence of error terms and stores the result in the temporary variable $CTES$. The C-test tests for independence of the errors instead of lack of correlation. In the SHAZAM implementation the null hypothesis is independence and the alternative hypothesis is serial dependence of order one. The test is consistent against higher order dependence structures also, as long as under the alternative consecutive elements of the time series are not independent.

GRAPH Prepares gnuplot plots of the recursive residuals when the **MAX** or **RECUR** options are specified. For more information on this option see the chapter **PLOTS AND GRAPHS**. With the **GRAPH** option the **APPEND**, **OUTPUT=**, **DEVICE=**, **PORT=** and **COMMFILE=** options are also available as described for the **GRAPH** command.

HANSEN Reports Hansen [1992] tests for parameter instability. Test statistics for the stability of each parameter (β, σ^2) individually and for the joint stability of all (K+1) parameters are calculated. Asymptotic critical values are listed in Table 1 of the Hansen paper. SHAZAM flags rejection of the null hypothesis of stability at the 1%, 5% and 10% significance levels. In contrast to the Chow test, the Hansen test does not require the specification of a breakpoint.

HET Runs a series of tests for HETeroskedasticity.

JACKKNIFE Runs a series of regressions, successively omitting a different observation to get **JACKKNIFE** coefficient estimates. An example of jackknife estimation is in the Appendix to Chapter 9 in the *Judge Handbook*.
LIST
Prints a table of observed (Y) and predicted (\(\hat{Y} \)) values of the dependent variable, and regression residuals (e). This gives the same output as the LIST option on OLS.

MAX
Equivalent to specifying the LIST, RECUR, ACF, BACKWARD, CHOWTEST, HANSEN, RESET and HET options. The computation of all these tests can be slow and can generate a lot of output.

RECEST
NORECEST suppresses the printing of the RECursive ESTimated coefficients when the RECUR option is specified.

RECRESID
NORECRESID suppresses the printing of the RECursive RESIDuals when the RECUR option is specified.

RECUR
Performs REC URsive Estimation by running a series of regressions by adding one observation per regression. It is often used for tests of structural change. Recursive residuals and CUSUM tests are printed along with a recursive t-test and Harvey’s recursive residuals exact heteroskedasticity test. Also see the MHET= and SIGLEVEL= options.

RESET

WHITE
NOWHITE With the HET option, the NOWHITE option excludes the computation of the White test statistics for heteroskedasticity. This is recommended when dummy variables are included in the list of explanatory variables.

WIDE
NOWIDE Reduces the width of output to 80 columns. The default value is explained in the chapter SET AND DISPLAY.

BOOTSAMP=
Specifies the number of samples desired for BOOTSAMP experiments on the previous OLS regression. This option is not appropriate with models that include lagged dependent variables as regressors. Examples of this option can be found in the Appendix to Chapter 9 of the Judge Handbook. Also see the example Bootstrapping Regression Coefficients in the chapter PROGRAMMING IN SHAZAM. Initially, a regression is run and the K coefficients \(\hat{\beta} \) and N residuals e are saved. Then, random samples
of size N of residuals are drawn with replacement and the residuals are
normalized using: \(e_t^* = \frac{e_t}{\sqrt{1 - K/N}} \).

Next, a new dependent variable is generated as: \(Y^* = X\hat{\beta} + e^* \)
The bootstrap estimates are computed as: \(\hat{\beta}^* = (X'X)^{-1}X'Y^* \).

BOOTUNIT= Writes out the generated coefficients for each sample in a **BOOT** strap experiment on the **UNIT** specified. It is used in conjunction with the **BOOTSAMP=** option. A file should be assigned to the unit with the **SHAZAM FILE** command. Units 11-49 may be used.

CHOWONE= Specifies the number of observations in the first group for the Chow test and Goldfeld-Quandt test. (The **CHOWTEST** option reports test statistics at every breakpoint).

GQOBS= Used with the **CHOWTEST** option to specify the number of central observations to be omitted for the Goldfeld-Quandt Test. The default is zero.

MHET= Used with the **CHOWTEST** and **RECUR** options to specify M, the number of residuals to use in Harvey’s recursive residuals exact heteroskedasticity test.

RECUNIT= Used with the **RECUR** option to write the **REC** ursive residuals and the CUSUM and CUSUMSQ of the recursive residuals on the **UNIT** specified. A file should be assigned to the unit with the **SHAZAM FILE** command. Units 11-49 may be used.

SIGLEVEL= Used with the **RECUR** option to specify the significance level desired for the CUSUM and CUSUMSQ tests. The available choices are 1, 5, and 10. The default is **SIGLEVEL=5**.

Warnings: After a regression with the **RESTRICT** option or a distributed lag model that incorporates restrictions the **DIAGNOS** command will not recognize these restrictions. That is, the **CHOWTEST** and **RECUR** options will work with the unrestricted model. After a weighted least squares regression with the **WEIGHT=** option the **DIAGNOS** command will compute test statistics with the untransformed residuals and so the **HET** option will not be appropriate for testing for heteroskedasticity in the transformed residuals.
EXAMPLES

For the regression equation \(Y_t = X_t \beta + \epsilon_t \) with \(K \) coefficients \(\beta \), denote the residuals by \(\epsilon_t \) and the predicted values by \(\hat{Y}_t \) for \(t = 1, \ldots, N \). Using Theil’s textile data a complete listing of diagnostic tests is obtained with the SHAZAM commands:

\[
\text{ols consume income price diagnos / max}
\]

Users may want to be selective in the tests that they consider. The examples that follow show SHAZAM output for some of the \textsc{diagnos} options from the above OLS regression.

Tests for Autocorrelation

The output produced with the \textsc{ACF} option is:

<table>
<thead>
<tr>
<th>LAG</th>
<th>RHO</th>
<th>STD ERR</th>
<th>T-STAT</th>
<th>LM-STAT</th>
<th>DW-TEST</th>
<th>BOX-PIERCE-LJUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.1455</td>
<td>.2425</td>
<td>-.5998</td>
<td>.7014</td>
<td>2.0185</td>
<td>.4272</td>
</tr>
<tr>
<td>2</td>
<td>-.2231</td>
<td>.2425</td>
<td>-.9200</td>
<td>1.2257</td>
<td>2.0359</td>
<td>1.4994</td>
</tr>
<tr>
<td>3</td>
<td>.1871</td>
<td>.2425</td>
<td>.7716</td>
<td>.9975</td>
<td>1.1956</td>
<td>2.3074</td>
</tr>
<tr>
<td>4</td>
<td>-.3002</td>
<td>.2425</td>
<td>-1.2377</td>
<td>1.7388</td>
<td>2.0133</td>
<td>4.5463</td>
</tr>
</tbody>
</table>

The residual autocorrelations (\textsc{RHO}) are calculated as:

\[
\hat{\rho}_j = \frac{\sum_{t=j+1}^{N} e_t e_{t-j}}{\sum_{t=1}^{N} e_t^2} \quad \text{for} \quad j = 1, \ldots, p
\]

Note that SHAZAM automatically sets the maximum lag order \(p \) based on the sample size of the data. In the above example \(p=4 \). If the autoregressive order is \(j \) the higher order autocorrelations are asymptotically normally distributed with zero mean and standard deviation \(1/\sqrt{N} \) (given on the SHAZAM output in the column \textsc{STD ERR}). The t-statistics (\textsc{T-STAT}) are calculated as \(\sqrt{N} \hat{\rho}_j \).

A Lagrange multiplier statistic for a test of \(H_0: \rho_j = 0 \) is discussed in Breusch and Pagan [1980, Section 3.2]. Denote \(e_{-j} \) as the (\(N \times 1 \)) vector containing \(e_{t-j} \) (with zeroes for initial values). The test statistic is:

\[
\text{LM} = N^2 \hat{\beta}_j^2 \hat{\sigma}^2 / \left[e_{-j}' e_{-j} - e_{-j}' X (X'X)^{-1} X' e_{-j} \right]
\]

where \(\hat{\sigma}^2 = \frac{e'e}{N} \)
The value \sqrt{LM} is reported as the LM-STAT statistic on the SHAZAM output. These test statistics have an asymptotic standard normal distribution. This test is appropriate when X contains lagged dependent variables.

A test for $H_0: \rho_1 = \rho_2 = \ldots = \rho_J = 0$ is given by the Box-Pierce-Ljung statistic (also see the chapter ARIMA MODELS) computed as:

$$Q = N(N + 2) \sum_{j=1}^{J} \frac{1}{N-j} \hat{\rho}_j^2 \quad \text{for } J = 1, \ldots, p$$

This test is not appropriate when X includes lagged dependent variables. Under the null hypothesis Q has an asymptotic χ_J^2 distribution. The Q statistic incorporates a small sample adjustment to give a modified form of the Box-Pierce statistic. The chi-square statistic reported at the end of the ACF output is the Box-Pierce statistic for a test that the residual autocorrelations are jointly zero when there are no lagged dependent variables. The statistic, that can be compared with a χ_p^2 distribution, is given by:

$$N \sum_{j=1}^{p} \hat{\rho}_j^2$$

Tests for Heteroskedasticity

The output produced with the HET option is:

<table>
<thead>
<tr>
<th>HETEROSEDASTICITY TESTS</th>
<th>CHI-SQUARE</th>
<th>D.F.</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST STATISTIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E**2 ON YHAT:</td>
<td>2.495</td>
<td>1</td>
<td>0.11424</td>
</tr>
<tr>
<td>E2 ON YHAT2:</td>
<td>2.658</td>
<td>1</td>
<td>0.10304</td>
</tr>
<tr>
<td>E2 ON LOG(YHAT2):</td>
<td>2.303</td>
<td>1</td>
<td>0.12911</td>
</tr>
<tr>
<td>E2 ON LAG(E2) ARCH TEST:</td>
<td>1.490</td>
<td>1</td>
<td>0.22221</td>
</tr>
<tr>
<td>LOG(E**2) ON X (HARVEY) TEST:</td>
<td>3.421</td>
<td>2</td>
<td>0.18081</td>
</tr>
<tr>
<td>ABS(E) ON X (GLEJSER) TEST:</td>
<td>4.202</td>
<td>2</td>
<td>0.12231</td>
</tr>
<tr>
<td>E**2 ON X (KOENKER(R2):</td>
<td>4.900</td>
<td>2</td>
<td>0.08631</td>
</tr>
<tr>
<td>B-P-G (SSR):</td>
<td>2.529</td>
<td>2</td>
<td>0.28241</td>
</tr>
<tr>
<td>E2 ON X X2 (WHITE) TEST:</td>
<td>4.936</td>
<td>4</td>
<td>0.29390</td>
</tr>
<tr>
<td>KOENKER(R2):</td>
<td>4.936</td>
<td>4</td>
<td>0.29390</td>
</tr>
<tr>
<td>B-P-G (SSR):</td>
<td>2.548</td>
<td>4</td>
<td>0.63612</td>
</tr>
<tr>
<td>E2 ON X X2 XX (WHITE) TEST:</td>
<td>4.951</td>
<td>5</td>
<td>0.42191</td>
</tr>
<tr>
<td>KOENKER(R2):</td>
<td>4.951</td>
<td>5</td>
<td>0.42191</td>
</tr>
<tr>
<td>B-P-G (SSR):</td>
<td>2.555</td>
<td>5</td>
<td>0.76816</td>
</tr>
</tbody>
</table>

The test statistics are obtained from the results of auxiliary regressions of the form:
DIAGNOSTIC TESTS

<table>
<thead>
<tr>
<th>Regressand</th>
<th>Regressors</th>
<th>Test Statistic</th>
<th>D.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_t^2</td>
<td>\hat{Y}_t, constant</td>
<td>NR2</td>
<td>1</td>
</tr>
<tr>
<td>e_t^2</td>
<td>\hat{Y}_t^2, constant</td>
<td>NR2</td>
<td>1</td>
</tr>
<tr>
<td>e_t^2</td>
<td>$\log(\hat{Y}_t^2)$, constant</td>
<td>NR2</td>
<td>1</td>
</tr>
<tr>
<td>e_t^2</td>
<td>e_{t-1}, constant</td>
<td>NR2</td>
<td>1</td>
</tr>
<tr>
<td>ARCH</td>
<td>log(e_t^2)</td>
<td>X_t</td>
<td>$SSR/4.9348$</td>
</tr>
<tr>
<td>Harvey</td>
<td>$</td>
<td>e_t</td>
<td>$</td>
</tr>
<tr>
<td>Glejser</td>
<td>e_t^2</td>
<td>X_t</td>
<td>NR2</td>
</tr>
<tr>
<td>Koenker</td>
<td>e_t^2</td>
<td>X_t</td>
<td>$\text{SSR}/(2 \sigma_e^4)$</td>
</tr>
<tr>
<td>B-P-G</td>
<td>e_t^2</td>
<td>X_t</td>
<td>$\text{SSR}/(2 \sigma_e^4)$</td>
</tr>
<tr>
<td>White</td>
<td>e_t^2</td>
<td>X_{kt}, $k = 1, \ldots, K$; X_{kt}^2, $k = 1, \ldots, K - 1$</td>
<td>NR2</td>
</tr>
<tr>
<td></td>
<td>e_t^2</td>
<td>same as above</td>
<td>$\text{SSR}/(2 \sigma_e^4)$</td>
</tr>
<tr>
<td>White</td>
<td>e_t^2</td>
<td>X_{kt}, $k = 1, \ldots, K$; $X_{kt} X_{jt}$, $j = 1, \ldots, k$</td>
<td>NR2</td>
</tr>
<tr>
<td></td>
<td>e_t^2</td>
<td>same as above</td>
<td>$\text{SSR}/(2 \sigma_e^4)$</td>
</tr>
</tbody>
</table>

where $\sigma_e^2 = e'e/N$ and R^2 and SSR are the multiple coefficient of determination and the regression sum of squares respectively from the auxiliary regression. Under the null hypothesis of homoskedasticity the test statistics can be compared with a χ^2 distribution with degrees of freedom as given in the D.F. column.

The ARCH test was introduced by Engle [1982]. The Harvey test is from Harvey [1976] and is discussed in Judge, Griffiths, Hill, Lutkepohl and Lee [1985, Equation 11.2.60]. The Glejser test is due to Glejser [1969] and is in Judge et al. [1985, Equation 11.2.29]. The B-P-G test is the Breusch-Pagan-Godfrey statistic (see Breusch and Pagan [1979] and Godfrey [1978]). Textbook discussion of this test is available in Griffiths, Hill and Judge [1993, pp. 495-496], Gujarati [2003, pp. 411-2] and Greene [2003, pp. 223-4]. The Koenker test is described in Greene [2003, p. 224] and Judge et al. [1985, p. 447, Equation 11.3.4]. White's

Warning: The White general heteroskedasticity test is not defined when dummy variables are included in the list of explanatory variables. The NOWHITE option can be used to suppress the calculation of the White test statistics.

Recursive Residuals and the CUSUM and CUSUMSQ Tests

The output produced with the RECUR option is:

```
RECURSIVE COEFFICIENT ESTIMATES
3   .58599       1.1338       -71.974
4   -.54970E-01  -1.2802       233.31
5   -.86357       -1.9976       384.60
6   .92446E-01    -1.5186       242.54
7   .60090        -1.2248       163.09
8   .61319        -1.4191       180.66
9   .36233        -1.6835       231.55
10  .55817        -1.5320       197.07
11  .59587        -1.5096       191.07
12  .93135        -1.3893       145.05
13  1.0961        -1.3266       122.08
14  1.0210        -1.3876       135.31
15  1.0177        -1.3746       134.45
16  1.0213        -1.3458       131.41
17  1.0617        -1.3830       130.71

RECURSIVE RESIDUALS - SIGNIFICANCE LEVEL = 5%
OBS RES-CUR    CUSUM    BOUND    LOWER    CUSUMSQ    UPPER
  4    .94469    .16379    4.0538   -.32902   .00206    .47188
  5    2.2989    .56238    4.5605   -.25759   .01426    .54331
  6    2.7913    1.04635   5.0673   -.18616   .03224    .61474
  7    3.7605    1.69835   5.5740   -.11474   .06487    .68616
  8    5.2155    2.60264   6.0807   -.04331   .12765    .75759
  9    2.5217    3.03985   6.5875   .02812    .14232    .82902
 10   -3.5083    2.43157   7.0942    .09955    .17073    .90045
 11   -9.5106    2.26667   7.6009    .17098    .17282    .97188
 12   -9.1586    .67873    8.1076    .24241    .36639    1.04331
 13   -8.5802    -.80893   8.6144    .31384    .53629    1.11474
 14    7.2539    .44877    9.1211    .38526    .65773    1.18616
 15   -2.4963    .01595    9.6278    .45669    .67211    1.25759
 16   -6.5587    -1.12122  10.1345    .52812    .77138    1.32902
 17    9.9530    .60447    10.6413    .59955    1.00000    1.40045

HARVEY-COLLIER [1977] RECURSIVE T-TEST = .1616 WITH 13 D.F.
HARVEY-PHILLIPS [1974] HETEROSKEDASTICITY TEST = 7.1480 WITH M = 4
```

A good discussion of recursive least squares is in Harvey [1990, Chapter 2.6]. The recursive coefficient estimates are OLS estimates based on the first t observations. Therefore, for t=N the recursive coefficients are identical to OLS. On the above output it can be verified that the coefficient estimates at 17 are the same as the coefficient estimates that
are produced with the **OLS** command. Denote the recursive coefficients by \(b_t \) for \(t = K, \ldots, N \) and define the \(t \times K \) matrix \(X(t) \) as the matrix containing \(X_1, X_2, \ldots, X_t \). The recursive residuals (in the column **REC-RES** on the SHAZAM output) are calculated as standardized prediction errors as:

\[
v_t = \frac{(Y_t - X'_t b_{t-1})}{\sqrt{1 + X'_t (X'_{t-1})^{-1} X_t}} \quad \text{for } t = K+1, \ldots, N
\]

The CUSUM (cumulative sum) of recursive residuals is:

\[
W_t = \frac{1}{\hat{\sigma}} \sum_{j=K+1}^{t} v_j \quad \text{for } t = K+1, \ldots, N, \quad \text{where } \hat{\sigma}^2 = \frac{1}{N-K-1} \sum_{t=K+1}^{N} (v_t - \bar{v})^2
\]

and \(\bar{v} \) is the mean of the recursive residuals. The CUSUMSQ (cumulative sum of squares) is:

\[
WW_t = \sum_{j=K+1}^{t} v_j^2 \quad \sum_{t=K+1}^{N} v_t^2 \quad \text{for } t = K+1, \ldots, N
\]

A test of misspecification can be based on the inspection of the CUSUM and CUSUMSQ of the recursive residuals. The construction of significance lines is developed in Brown, Durbin and Evans [1975]. The significance values for the CUSUMSQ test are tabulated in Durbin [1969] and reprinted in Harvey [1990, p. 366-7]. The SHAZAM output reports approximate 5% upper and lower bounds for the CUSUMSQ test. The **SIGLEVEL** option can be used to request 1% or 10% bounds. Brown, Durbin and Evans [1975] recommend plots as a way of presenting these tests and they comment that "the significance tests suggested should be regarded as yardsticks for the interpretation of data rather than leading to hard and fast decisions". Plots are obtained with the **GRAPH** option. Note that these tests are not valid for models with lagged dependent variables.

Test statistics can be constructed to detect departures from randomness in the residuals. To test the hypothesis that the mean of the recursive residuals is zero the SHAZAM output reports the **RECURSIVE T-TEST** (from Harvey and Collier [1977] and given in Harvey [1990, Chapter 5, Equation 2.10]) calculated as:

\[
\frac{\bar{v}}{\sqrt{\hat{\sigma}^2 / (N-K)}}
\]

The statistic can be compared with a t-distribution with \((N-K-1) \) degrees of freedom. The second test statistic that the SHAZAM output reports is a **HETEROSKEDASTICITY TEST**
proposed in Harvey and Phillips [1974] and given in Harvey [1990, Chapter 5, Equation 2.12]. This test statistic is based on the first set and last set of \(m \) recursive residuals and is calculated as:

\[
\frac{\sum_{t=N-m+1}^{N} v_t^2}{\sum_{t=K+1}^{K+m} v_t^2}
\]

This has an \(F_{(m,m)} \) distribution under the null hypothesis of homoskedasticity. SHAZAM sets \(m \) equal to \((N-K)/3 \). Other choices of \(m \) can be set with the \texttt{MHET}= option.

The output produced with the \texttt{BACKWARD} and \texttt{RECUR} options is:

| BACKWARDS
| RECUSIVE COEFFICIENT ESTIMATES |
|----|----|----|
| 15 | 6.2400 | 1.5400 | -576.61 |
| 14 | 17.460 | -12.984 | -853.75 |
| 13 | 2.1880 | -2.4999 | 83.360 |
| 12 | 1.8767 | -2.3500 | 106.17 |
| 11 | 2.0353 | -2.2604 | 85.733 |
| 10 | 2.0944 | -2.2117 | 77.007 |
| 9 | 2.1966 | -2.1140 | 60.963 |
| 8 | 2.1916 | -2.0003 | 54.550 |
| 7 | 2.0917 | -1.8616 | 56.131 |
| 6 | 2.1017 | -1.8725 | 55.789 |
| 5 | 1.8743 | -1.7343 | 70.398 |
| 4 | 1.8319 | -1.7090 | 73.130 |
| 3 | 1.3919 | -1.5101 | 105.21 |
| 2 | 1.2061 | -1.4356 | 119.36 |
| 1 | 1.0617 | -1.3830 | 130.71 |

| BACKWARDS
<p>| RECUSIVE RESIDUALS - SIGNIFICANCE LEVEL = 5% |
|----|----|----|----|</p>
<table>
<thead>
<tr>
<th>OBS</th>
<th>REC-RES</th>
<th>CUSUM</th>
<th>BOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>5.6889</td>
<td>1.68608</td>
<td>4.0538</td>
</tr>
<tr>
<td>13</td>
<td>11.008</td>
<td>4.94850</td>
<td>4.5605</td>
</tr>
<tr>
<td>12</td>
<td>3.2906</td>
<td>5.92376</td>
<td>5.0673</td>
</tr>
<tr>
<td>11</td>
<td>4.9015</td>
<td>7.37648</td>
<td>5.5740</td>
</tr>
<tr>
<td>10</td>
<td>.98227</td>
<td>7.66761</td>
<td>6.0807</td>
</tr>
<tr>
<td>9</td>
<td>2.1057</td>
<td>8.29170</td>
<td>6.5875</td>
</tr>
<tr>
<td>8</td>
<td>1.7982</td>
<td>8.82465</td>
<td>7.0942</td>
</tr>
<tr>
<td>7</td>
<td>3.0412</td>
<td>9.72602</td>
<td>7.6009</td>
</tr>
<tr>
<td>6</td>
<td>-.45786</td>
<td>9.59031</td>
<td>8.1076</td>
</tr>
<tr>
<td>5</td>
<td>6.4177</td>
<td>11.49238</td>
<td>8.6144</td>
</tr>
<tr>
<td>4</td>
<td>1.3958</td>
<td>11.90606</td>
<td>9.1211</td>
</tr>
<tr>
<td>3</td>
<td>9.8188</td>
<td>14.81615</td>
<td>9.6278</td>
</tr>
<tr>
<td>2</td>
<td>6.4933</td>
<td>16.74062</td>
<td>10.1345</td>
</tr>
<tr>
<td>1</td>
<td>6.7182</td>
<td>18.73175</td>
<td>10.6413</td>
</tr>
</tbody>
</table>

| BACKWARDS
| HARVEY-COLLIER [1977] RECUSIVE T-TEST = 5.0063 WITH 13 D.F. |
|----|----|----|----|
| HARVEY-PHILLIPS [1974] HETEROSKEDASTICITY TEST = .9855 WITH M = 4 |
The backward recursive coefficients and recursive residuals estimates are calculated using the same formulas as given above, but the calculations are started at the end, instead of at the beginning, of the sample.

The CHOW Test and Goldfeld-Quandt Test

The output produced with the CHOWTEST option is:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1616 WITH 13 D.F.</td>
<td>7.1480 WITH M = 4</td>
</tr>
</tbody>
</table>

Backwards

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0063 WITH 13 D.F.</td>
<td>0.9855 WITH M = 4</td>
</tr>
</tbody>
</table>

Sequential Chow and Goldfeld-Quandt Tests

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
<th>SSE1</th>
<th>SSE2</th>
<th>CHOW</th>
<th>PVALUE</th>
<th>G-Q</th>
<th>DF1</th>
<th>DF2</th>
<th>CHOW TEST - F DISTRIBUTION WITH DF1= 3 AND DF2= 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>13</td>
<td>0.89245</td>
<td>247.66</td>
<td>2.7256</td>
<td>0.095</td>
<td>3.604E-01</td>
<td>1</td>
<td>10</td>
<td>.147</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>6.1774</td>
<td>206.47</td>
<td>3.8048</td>
<td>0.043</td>
<td>1.346</td>
<td>2</td>
<td>9</td>
<td>.124</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>13.969</td>
<td>206.26</td>
<td>3.5476</td>
<td>0.051</td>
<td>1.806</td>
<td>3</td>
<td>8</td>
<td>.093</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>28.110</td>
<td>197.02</td>
<td>3.3908</td>
<td>0.058</td>
<td>0.2497</td>
<td>4</td>
<td>7</td>
<td>.099</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>55.312</td>
<td>193.78</td>
<td>2.7117</td>
<td>0.096</td>
<td>0.3425</td>
<td>5</td>
<td>6</td>
<td>.130</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>61.671</td>
<td>189.35</td>
<td>2.6628</td>
<td>0.100</td>
<td>0.2714</td>
<td>6</td>
<td>5</td>
<td>.072</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>73.979</td>
<td>188.38</td>
<td>2.3892</td>
<td>0.124</td>
<td>0.2244</td>
<td>7</td>
<td>4</td>
<td>.042</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>74.883</td>
<td>164.36</td>
<td>2.9744</td>
<td>0.078</td>
<td>0.1709</td>
<td>8</td>
<td>3</td>
<td>.020</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>158.76</td>
<td>153.53</td>
<td>1.4209</td>
<td>0.289</td>
<td>0.2298</td>
<td>9</td>
<td>2</td>
<td>.048</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>232.38</td>
<td>32.364</td>
<td>2.3346</td>
<td>0.130</td>
<td>0.7180</td>
<td>10</td>
<td>1</td>
<td>.265</td>
</tr>
</tbody>
</table>

The Chow [1960] test gives a test for structural change. The SHAZAM output gives statistics that test for breaks at \(t = K + 1, \ldots, N - K - 1 \). The Chow test statistic is calculated as:

\[
CHOW = \frac{(SSE - SSE_1 - SSE_2)/K}{(SSE_1 + SSE_2)/(N_1 + N_2 - 2K)}
\]

where SSE1 and SSE2 are the sum of squared errors from the first and second parts of the split sample, \(N \) is the number of observations in the entire sample, \(K \) is the number of estimated parameters, \(N_1 \) and \(N_2 \) are the observations in the first and second part of the split sample respectively, and SSE is the residual sum of squares from the regression over the entire sample. If the test statistic is less than the critical value from an \(f_{(K,N_1+N_2-2K)} \) distribution then there is no evidence for a structural break.

The Goldfeld-Quandt [1965, 1972] (G-Q) statistic provides a test for different error variance between two subsets of observations. Denote the variance in the first subset by \(\sigma_1^2 \) and the variance in the second subset by \(\sigma_2^2 \). The null hypothesis is \(H_0 : \sigma_1^2 = \sigma_2^2 \) and the alternative hypothesis is \(H_1 : \sigma_1^2 > \sigma_2^2 \) (that is, the second subset of observations has smaller variance.
than the first subset). Note that many authors present the alternative as larger variance in the second subset of observations. Goldfeld and Quandt recommend ordering of the observations by the values of one of the regressors. This can be done with the `SORT` command. The `DESC` option on the `SORT` command should be used if it is assumed that the variance is positively related to the value of the sort variable. The test can be implemented by omitting \(r \) central observations. The value for \(r \) can be specified with the `GQOBS=` option and the default is \(r = 0 \). The sample is split into two groups with \(N_1 \) and \(N_2 \) observations such that \(N_1 + N_2 = N \) and the test statistic is calculated as:

\[
GQ = \frac{RSSE_1 / DF_1}{RSSE_2 / DF_2}
\]

where \(RSSE_1 \) and \(RSSE_2 \) are the sum of squared errors from the first \(N_1-r/2 \) and the last \(N_2-r/2 \) observations respectively and \(DF_1 = N_1-K-r/2 \) and \(DF_2 = N_2-K-r/2 \). The statistic can be compared with an \(F_{(DF_1,DF_2)} \) distribution.

If the GQ test statistic is less than 1 then the p-value reported in the final column of the SHAZAM output is for a test of the null hypothesis of equal variance against the alternative hypothesis of \(\sigma_1^2 < \sigma_2^2 \) (larger variance in the second group). Therefore, there is evidence for smaller variance in the second group if \(GQ > 1 \) and the p-value is less than 0.05 (or some selected significance level). There is evidence for larger variance in the second group if \(GQ < 1 \) and the p-value is less than 0.05.

Hansen Tests

The output produced with the `HANSEN` option is:

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>TEST-STAT</th>
<th>CRITICAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>0.59145E-01</td>
<td>STABLE: 10%</td>
</tr>
<tr>
<td>PRICE</td>
<td>0.91351E-01</td>
<td>STABLE: 10%</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.61507E-01</td>
<td>STABLE: 10%</td>
</tr>
<tr>
<td>VARIANCE</td>
<td>0.63016</td>
<td>UNSTABLE: 5%</td>
</tr>
<tr>
<td>JOINT</td>
<td>1.1880</td>
<td>UNSTABLE: 10%</td>
</tr>
</tbody>
</table>

A test statistic that exceeds the critical value gives evidence for rejecting the null hypothesis of parameter stability. The joint stability test includes the variance. Discussion of the Hansen test is available in Greene [2003, p. 134].
RESET Tests

The output produced with the **RESET** option is:

<table>
<thead>
<tr>
<th>RAMSEY RESET SPECIFICATION TESTS USING POWERS OF YHAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET(2) = 11.787 - F WITH DF1= 1 AND DF2= 13 P-VALUE= 0.004</td>
</tr>
<tr>
<td>RESET(3) = 5.4877 - F WITH DF1= 2 AND DF2= 12 P-VALUE= 0.020</td>
</tr>
<tr>
<td>RESET(4) = 3.6049 - F WITH DF1= 3 AND DF2= 11 P-VALUE= 0.049</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEBENEDICTIS-GILES FRESET SPECIFICATION TESTS USING FRESETL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESET(1) = 3.8735 - F WITH DF1= 2 AND DF2= 12 P-VALUE= 0.050</td>
</tr>
<tr>
<td>FRESET(2) = 1.9191 - F WITH DF1= 4 AND DF2= 10 P-VALUE= 0.184</td>
</tr>
<tr>
<td>FRESET(3) = 1.0519 - F WITH DF1= 6 AND DF2= 8 P-VALUE= 0.460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEBENEDICTIS-GILES FRESET SPECIFICATION TESTS USING FRESETs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESET(1) = 2.0201 - F WITH DF1= 2 AND DF2= 12 P-VALUE= 0.175</td>
</tr>
<tr>
<td>FRESET(2) = 0.88559 - F WITH DF1= 4 AND DF2= 10 P-VALUE= 0.507</td>
</tr>
<tr>
<td>FRESET(3) = 2.4366 - F WITH DF1= 6 AND DF2= 8 P-VALUE= 0.121</td>
</tr>
</tbody>
</table>

The Ramsey [1969] RESET tests (REgression Specification Error Test) are computed by introducing test variables constructed as powers of the predicted values \(\hat{Y} \) as additional regressors. The RESET test is an F test that tests whether the coefficients on the new regressors are zero.

The DeBenedictis and Giles [1998, 2000] FRESET tests for mis-specification consider a Fourier approximation for the mis-specified part of the regression equation. They propose constructing:

\[
w_t = \pi \cdot \frac{2 \hat{Y}_t - \left(\hat{Y}_{\text{max}} + \hat{Y}_{\text{min}} \right)}{\hat{Y}_{\text{max}} - \hat{Y}_{\text{min}}}
\]

An alternative is:

\[
w_t^* = 2 \pi \sin^2 \left(\hat{Y}_t \right) - \pi
\]

The test statistics for the various mis-specification tests are calculated from auxiliary regressions that include \(m \) additional regressors as given in the table below.

<table>
<thead>
<tr>
<th>Test</th>
<th>m</th>
<th>Test Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET(2)</td>
<td>1</td>
<td>(\hat{Y}_t^2)</td>
</tr>
<tr>
<td>RESET(3)</td>
<td>2</td>
<td>(\hat{Y}_t^2, \hat{Y}_t^3)</td>
</tr>
<tr>
<td>RESET(4)</td>
<td>3</td>
<td>(\hat{Y}_t^2, \hat{Y}_t^3, \hat{Y}_t^4)</td>
</tr>
<tr>
<td>FRESETL(1)</td>
<td>2</td>
<td>\sin(w_t), \cos(w_t)</td>
</tr>
<tr>
<td>FRESETL(2)</td>
<td>4</td>
<td>\sin(w_t), \cos(w_t), \sin(2w_t), \cos(2w_t)</td>
</tr>
<tr>
<td>FRESETL(3)</td>
<td>6</td>
<td>\sin(w_t), \cos(w_t), \sin(2w_t), \cos(2w_t), \sin(3w_t), \cos(3w_t)</td>
</tr>
<tr>
<td>FRESETS(1)</td>
<td>2</td>
<td>\sin(w_t^), \cos(w_t^)</td>
</tr>
<tr>
<td>FRESETS(2)</td>
<td>4</td>
<td>\sin(w_t^), \cos(w_t^), \sin(2w_t^), \cos(2w_t^)</td>
</tr>
<tr>
<td>FRESETS(3)</td>
<td>6</td>
<td>\sin(w_t^), \cos(w_t^), \sin(2w_t^), \cos(2w_t^), \sin(3w_t^), \cos(3w_t^)</td>
</tr>
</tbody>
</table>

Denote the multiple coefficient of determination from the initial regression by R^2_0 and the multiple coefficient of determination from the auxiliary regression by R^2. The F-test statistic that can compared with an F-distribution with $(m, N - K - m)$ degrees of freedom is:

$$\frac{(R^2 - R^2_0)/m}{(1 - R^2)/(N - K - m)}$$

The **Jackknife Estimator**

The output produced with the **JACKKNIFE** option is:

<table>
<thead>
<tr>
<th>JACKKNIFE COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COEFFICIENT</td>
</tr>
<tr>
<td>INCOME</td>
</tr>
<tr>
<td>PRICE</td>
</tr>
<tr>
<td>CONSTANT</td>
</tr>
</tbody>
</table>

With this option SHAZAM runs a series of regressions, successively omitting a different observation to get jackknife coefficient estimates (see, for example, Judge et al. [1988, Section 9.A.2]). The jackknife coefficients are:

$$\hat{\beta}_{(t)} = \hat{\beta} - (X'X)^{-1}X_te_t^+$$

where $$e_t^+ = e_t / (1 - K_{tt})$$

and K_{tt} is the t^{th} diagonal element of the matrix $X(X'X)^{-1}X'$. A total of N (Kx1) coefficient vectors are generated each corresponding to a separate regression with the t^{th} observation dropped. The average of the N (Kx1) coefficient vectors is calculated and reported on the SHAZAM output. The jackknife estimator of the covariance matrix of the parameter estimates is given in Judge et al. [1988, Section 9.A.2].
15. DISTRIBUTED-LAG MODELS

"Gentlemen, you have come sixty days too late. The depression is over."

Herbert Hoover
U.S. President, June 1930

Models that include lagged variables as explanatory variables can be specified with a special form of notation available only with the OLS, AUTO, BOX, GLS and POOL commands. This is not available with the SYSTEM, MLE, NL, PROBIT, LOGIT, TOBIT, ROBUST, ARIMA or any other estimation command. An extension is available for the estimation of Almon polynomial distributed lags. With the OLS command, the PIL option is available for estimation with the Mitchell-Speaker [1986] polynomial inverse lags.

Discussion on the use of lagged variables in regression analysis is available in many econometrics textbooks. For example, see Gujarati [2003, Chapter 17]; Greene [2003, Chapter 19]; Griffiths, Hill and Judge [1993, Chapter 21]; Maddala [1977, pp. 355-359]; Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 9.3]; Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 17]; Pindyck and Rubinfeld [1998, Chapter 9]; and Johnston [1984]. The distributed lag model has the form:

\[Y_t = \gamma + \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \ldots + \beta_S X_{t-S} + \varepsilon_t \]

where S is the lag length.

A distributed lag for any explanatory variable on the estimation command (OLS, AUTO, BOX, GLS or POOL) can be specified using the special form:

\[\text{indep(first.last)} \]

where indep is the name of an independent variable. The numbers in parentheses specify the first and last periods to use for lags. For example, (0.3) means to use the current period (0) and lags t–1, t–2, and t–3. Each explanatory variable may have a different lag structure.

An example, from Griffiths, Hill and Judge [1993, p. 683], is the response of quarterly capital expenditures (Y) to capital appropriations (X) in manufacturing. Assuming a lag length of 8 periods the SHAZAM commands to estimate the model are:
sample 1 88
read (table21.1) time y x
ols y x(0.8)

SHAZAM will automatically delete the necessary number of observations corresponding to any undefined lagged variables at the beginning of the data, so this should not be done with the SAMPLE command. In the above example the estimation sample period will start at observation 9. However, if you wish to use the SAMPLE command and delete the observations yourself, you should use the SET NODELETE command. For example, the distributed lag model for manufacturing expenditure can be estimated with the following commands.

sample 1 88
read (table21.1) time y x
sample 9 88
set nodelete
ols y x(0.8)

The SHAZAM output that corresponds to Table 21.2 of Griffiths et al. [1993, p. 685] is:

<table>
<thead>
<tr>
<th>OLS Y X(0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAG FOR X</td>
</tr>
<tr>
<td>OLS ESTIMATION</td>
</tr>
<tr>
<td>80 OBSERVATIONS</td>
</tr>
<tr>
<td>...NOTE..SAMPLE RANGE SET TO:</td>
</tr>
<tr>
<td>R-SQUARE = .9934</td>
</tr>
<tr>
<td>VARIANCE OF THE ESTIMATE-SIGMA2 = 35214.</td>
</tr>
<tr>
<td>STANDARD ERROR OF THE ESTIMATE-SIGMA = 187.65</td>
</tr>
<tr>
<td>SUM OF SQUARED ERRORS-SSE = .24650E+07</td>
</tr>
<tr>
<td>MEAN OF DEPENDENT VARIABLE = 4532.5</td>
</tr>
<tr>
<td>LOG OF THE LIKELIHOOD FUNCTION = -526.942</td>
</tr>
</tbody>
</table>

TESTS ON LAGGED COEFFICIENTS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SUM(COEFS)</th>
<th>STD ERROR</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>MEAN LAG</th>
<th>JOINT-F</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.93923</td>
<td>0.117E-01</td>
<td>80.0</td>
<td>0.000</td>
<td>3.917</td>
<td>0.117E+04</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>COEFFICIENT</td>
<td>ERROR</td>
<td>70 DF</td>
<td>P-VALUE</td>
</tr>
<tr>
<td>X</td>
<td>.38379E-01</td>
<td>.3467E-01</td>
<td>1.107</td>
<td>.272</td>
</tr>
<tr>
<td>X</td>
<td>.67204E-01</td>
<td>.6851E-01</td>
<td>.9809</td>
<td>.330</td>
</tr>
<tr>
<td>X</td>
<td>.18124</td>
<td>.8936E-01</td>
<td>2.028</td>
<td>.046</td>
</tr>
<tr>
<td>X</td>
<td>.19443</td>
<td>.9254E-01</td>
<td>2.101</td>
<td>.039</td>
</tr>
<tr>
<td>X</td>
<td>.16989</td>
<td>.9312E-01</td>
<td>1.824</td>
<td>.072</td>
</tr>
<tr>
<td>X</td>
<td>.52360E-01</td>
<td>.91778E-01</td>
<td>1.5706</td>
<td>.570</td>
</tr>
<tr>
<td>X</td>
<td>.52461E-01</td>
<td>.9385E-01</td>
<td>1.5590</td>
<td>.578</td>
</tr>
<tr>
<td>X</td>
<td>.56178E-01</td>
<td>.9415E-01</td>
<td>1.5967</td>
<td>.553</td>
</tr>
<tr>
<td>X</td>
<td>.12708</td>
<td>.5983E-01</td>
<td>2.124</td>
<td>.037</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>33.415</td>
<td>53.71</td>
<td>.6221</td>
<td>.536</td>
</tr>
</tbody>
</table>

The parameter estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_8$ and $\hat{\alpha}$ are listed in the ESTIMATED COEFFICIENT column. The estimate $\hat{\beta}_0$ has an interpretation as an impact or short-run multiplier. The
long-run or total distributed lag multiplier is estimated as the sum of the lag coefficients (SUM(COEFS)):

$$\hat{\beta}^m = \sum_{i=0}^{S} \hat{\beta}_i$$

The standard error (STD_ERROR) of the long run multiplier is calculated as:

$$SE(\hat{\beta}^m) = \left[\sum_{i=0}^{S} V(\hat{\beta}_i) + 2 \sum_{i<j} \text{Cov}(\hat{\beta}_i, \hat{\beta}_j) \right]^{1/2}$$

A T-RATIO is computed as $$\hat{\beta}^m / SE(\hat{\beta}^m)$$.

The mean lag gives a measure of the speed of adjustment and is estimated as the weighted average:

$$\sum_{i=0}^{S} i \cdot \hat{\beta}_i / \sum_{i=0}^{S} \hat{\beta}_i$$

The mean lag may only have a useful interpretation if the lag coefficients are all positive.

The SHAZAM output also reports a JOINT-F statistic for a test of the null hypothesis that all coefficients associated with the distributed lag variable are simultaneously equal to zero.

In the above example the estimate of the long-run impact is 0.93923 and the t-statistic of 80.028 indicates that it is statistically significant. The estimate of the short-run impact is 0.038379 and this does not appear significantly different from zero. However, Griffiths et al. [1993, p. 683] discuss that multicollinearity may be a problem with unrestricted estimation of distributed lag models.

The special notation for lagged variables can be used to specify equations that include lagged dependent variables as regressors. For example, the next SHAZAM command implements OLS estimation of a model that includes a lagged dependent variable. The explanatory variables also include the current value of INCOME and the current and 2 lagged values of the variable PRICE.

```
ols consume consume(1.1) income price(0.2)
```
Almon Polynomial Distributed Lag Models

The Almon [1965] method imposes restrictions on the coefficients of the distributed lag model. The coefficients are restricted to lie on a polynomial of degree r. The form of the regression equation is:

$$y_t = \gamma + \sum_{i=a}^{b} \beta_i x_{t-i} + \varepsilon_t \quad \text{where} \quad \beta_i = \sum_{j=0}^{r} \alpha_j(i)$$

SHAZAM allows the user to specify a lag length, order of polynomial and endpoint constraints on any independent variable in the model. Each independent variable may have different order and endpoint constraints. An Almon polynomial distributed lag for any explanatory variable on the estimation command (OLS, AUTO, BOX, GLS, or POOL) can be specified using the special form:

```
indep(first.last,order,endcon)
```

where `indep` is the name of an independent variable. Each independent variable may have up to 3 parameters in parentheses which specify the form of the polynomial lag. The first parameter contains two numbers separated by a dot (.). These numbers specify the first and last periods to use for lags. The `order` parameter specifies the order of the Almon lag scheme. The `endcon` parameter specifies the endpoint restrictions as follows:

- $0 =$ No Endpoint restrictions;
- $1 =$ Endpoint restrictions on the left side of the polynomial;
- $2 =$ Endpoint restrictions on the right side of the polynomial;
- $3 =$ Endpoint restrictions on both left and right sides.

If `order` and `endcon` are not specified an unrestricted lag is used.

The Almon method imposes restrictions on the coefficients. In this case the `DWPVALUE`, `METHOD=HH`, and `STEPWISE REGRESSION` may not be used (see the chapter `ORDINARY LEAST SQUARES`). It should also be noted that some statistics on the `DIAGNOS` command like the Chow, Goldfeld-Quandt and recursive residuals tests will not incorporate the restrictions (see the chapter `DIAGNOSTIC TESTS`).

Note that other computer packages may use a different method to specify the degree of the polynomial. In particular the order may be equal to the SHAZAM definition plus 1.
The number of degrees of freedom is increased by the number of restrictions. Suppose \(J \) explanatory variables are specified and variable \(j \) has first and last lag period \(a_j \), \(b_j \) with polynomial order \(r_j \) and number of endpoint restrictions \(m_j \). When a constant term is included the number of variables in the regression is:

\[
K = 1 + \sum_{j=1}^{J} (b_j - a_j + 1)
\]

The number of restrictions is:

\[
q = (K - 1) - \sum_{j=1}^{J} (r_j - m_j + 1)
\]

The number of degrees of freedom is then \(N - K + q \).

An estimation method is to construct variables as linear combinations of the \(X \) variables and apply unrestricted estimation using the constructed variables as regressors. The parameter estimates \(\hat{\beta}_i \) are then recovered from linear combinations of the estimated coefficients. This method is described in Gujarati [2003] and other econometrics textbooks. The SHAZAM estimation method is to cast the problem in the framework of restricted estimation. That is, restrictions are imposed as with the \texttt{RESTRICT} option on the estimation command.

The restrictions on the parameter vector \(\beta \) due to the specification of the degree of the polynomial, and/or due to the specification of end-point constraints on the polynomial, may be found using Pascal’s triangle (for discussion see Johnston [1984] or Greene [1993, p. 523]). The restrictions have the form \(R\beta = 0 \) where the elements in the matrix \(R \) are obtained from Pascal’s triangle given by:

\[
\begin{bmatrix}
1 \\
1 & -1 \\
1 & -2 & 1 \\
1 & -3 & 3 & -1 \\
1 & -4 & 6 & -4 & 1
\end{bmatrix}
\]

Polynomial of degree 2

Polynomial of degree 3

This can be illustrated with the manufacturing data set used previously. Assuming a lag length of 8 periods and a polynomial of degree 2 the parameter restrictions are:
The next output shows the estimation results that correspond to Table 21.5 of Griffiths, Hill and Judge [1993, p. 687].

\[
\begin{align*}
\beta_0 - 3\beta_1 + 3\beta_2 - \beta_3 &= 0 \\
\beta_1 - 3\beta_2 + 3\beta_3 - \beta_4 &= 0 \\
\beta_2 - 3\beta_3 + 3\beta_4 - \beta_5 &= 0 \\
\beta_3 - 3\beta_4 + 3\beta_5 - \beta_6 &= 0 \\
\beta_4 - 3\beta_5 + 3\beta_6 - \beta_7 &= 0 \\
\beta_5 - 3\beta_6 + 3\beta_7 - \beta_8 &= 0
\end{align*}
\]

A test of the validity of the restrictions is given by testing the null hypothesis \(H_0 : R\beta = 0 \). The F-statistic is calculated as:

\[
F = \frac{1}{q} (R\hat{\beta})' \left[R\left(\hat{\sigma}^2(X'X)^{-1}\right)R' \right]^{-1}(R\hat{\beta})
\]
where q is the number of restrictions. Under the null hypothesis the F-statistic is distributed as $F_{q,N-K}$. N is the number of observations used in the estimation and K is the total number of coefficients estimated.

On the above output the F test on the restrictions has the value 1.1500. The p-value is reported as 0.34309 and so the null hypothesis of valid restrictions is not rejected. For the t-ratios the degrees of freedom is adjusted by the number of restrictions so that the degrees of freedom is $N-K+q = 80-10+6 = 76$.

Endpoint restrictions as described in Pindyck and Rubinfeld [1998, p. 240] may be specified for any polynomial. The use of endpoint restrictions increases the number of restrictions imposed in the model. For example, for the manufacturing data with a lag length of 8 periods and a second degree polynomial, an endpoint restriction on the left side can be incorporated with the command:

```
OLS Y X(0.8,2,1)
```

The additional restriction imposed is:

$$-3\beta_0 + 3\beta_1 - \beta_2 = 0$$

An endpoint restriction on the right side gives the added restriction:

$$\beta_6 - 3\beta_7 + 3\beta_8 = 0$$

Granger Causality

A test for noncausality is obtained by testing for zero restrictions on the coefficients of a bivariate VAR(p) process. With the distributed lag notation, the JOINT-F statistic reported on the SHAZAM output gives a test statistic. The example below uses quarterly data on consumption (Y_1) and income (Y_2) from Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Table 18.1]. A VAR(4) model is assumed to follow the example in Judge et al. [1988, p. 770].
DISTRIBUTED-LAG MODELS

SAMPLE 1 75
READ Y1 Y2
2 VARIABLES AND 75 OBSERVATIONS STARTING AT OBS 1

* Consider a VAR(4) model
SAMPLE 1 71
* Test H0: Y2 does not Granger-cause Y1
* The test statistic is the JOINT-F on Y2
OLS Y1 Y1(1.4) Y2(1.4)
LAG FOR Y1 RANGE = 1 4 ORDER= 0 ENDCON=0
LAG FOR Y2 RANGE = 1 4 ORDER= 0 ENDCON=0

OLS ESTIMATION
67 OBSERVATIONS DEPENDENT VARIABLE = Y1
NOTE: SAMPLE RANGE SET TO: 5, 71
R-SQUARE = 0.3418 R-SQUARE ADJUSTED = 0.2510
VARIANCE OF THE ESTIMATE SIGMA**2 = 283.86
STANDARD ERROR OF THE ESTIMATE SIGMA = 16.848
SUM OF SQUARED ERRORS SSE= 16464.
MEAN OF DEPENDENT VARIABLE = 14.836
LOG OF THE LIKELIHOOD FUNCTION = -279.460

TESTS ON LAGGED COEFFICIENTS
VARIABLE SUM(COEFS) STD ERROR T-RATIO P-VALUE MEAN LAG JOIN F P-VALUE
Y1 0.11389E-01 0.340 0.335E-01 0.973 -14.976 1.07 0.379
Y2 0.38335 0.284 1.35 0.1 0.635 4.78 0.002

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY NAME COEFFICIENT ERROR CORR. COEFFICIENT AT MEANS
Y1 -0.68107E-01 0.151 0.4507 0.654-0.059 -0.0685 -0.0673
Y1 0.15389 0.1654 0.9305 0.356 0.121 0.1507 0.1435
Y1 0.11265 0.1669 0.6750 0.502 0.088 0.1097 0.1026
Y1 -0.18705 0.1244 -1.503 0.138-0.194 -0.1959 -0.1487
Y2 0.50283 0.1248 4.028 0.000 0.468 0.5678 0.5362
Y2 -0.29019E-01 0.1498 -0.1948 0.846-0.026 -0.0329 -0.0308
Y2 -0.16032 0.1492 -1.075 0.287-0.140 -0.1802 -0.1632
Y2 0.69857E-01 0.1279 0.5461 0.587 0.072 0.0789 0.0715
CONSTANT 8.2510 3.137 2.630 0.011 0.326 0.0000 0.5562

* Test H0: Y1 does not Granger-cause Y2
* The test statistic is the JOINT-F on Y1
OLS Y2 Y1(1.4) Y2(1.4)
LAG FOR Y1 RANGE = 1 4 ORDER= 0 ENDCON=0
LAG FOR Y2 RANGE = 1 4 ORDER= 0 ENDCON=0

OLS ESTIMATION
67 OBSERVATIONS DEPENDENT VARIABLE = Y2
NOTE: SAMPLE RANGE SET TO: 5, 71
R-SQUARE = 0.2037 R-SQUARE ADJUSTED = 0.0939
VARIANCE OF THE ESTIMATE SIGMA**2 = 427.75
STANDARD ERROR OF THE ESTIMATE SIGMA = 20.682
SUM OF SQUARED ERRORS SSE= 24810.
MEAN OF DEPENDENT VARIABLE = 16.134
LOG OF THE LIKELIHOOD FUNCTION = -293.198

TESTS ON LAGGED COEFFICIENTS
VARIABLE SUM(COEFS) STD ERROR T-RATIO P-VALUE MEAN LAG JOIN F P-VALUE
Y1 0.32388 0.151 0.4507 0.654-0.059 -0.0685 -0.0673
Y1 0.16905 0.1492 -1.075 0.287-0.140 -0.1802 -0.1632
The first OLS estimation shows an F-test statistic of 4.78. The p-value of 0.002 suggests that the null hypothesis that there is no causality from income (Y2) to consumption (Y1) can be rejected. The second OLS estimation reports an F-test statistic of 0.640 to indicate that the null hypothesis that there is no causality from consumption to income is not rejected.

Polynomial Inverse Lag Models

The polynomial inverse lag model proposed by Mitchell and Speaker [1986] assumes an infinite distributed lag so that no lag length need be specified. The regression equation is:

\[Y_t = \gamma + \sum_{i=0}^{\infty} \beta_i X_{t-i} + \epsilon_t \]

where \(\beta_i = \sum_{j=2}^{r} a_j \left(\frac{1}{i+1} \right)^j \)

The degree of polynomial \(r \) must be specified (see the discussion in Mitchell and Speaker [1986, p. 331]). With the **OLS** command, a polynomial inverse lag for any explanatory variable can be specified using the general command format:

OLS depvar indep(first.last,order) / PIL options

where **first** and **last** specifies the range of lag coefficients to list on the SHAZAM output and **order** gives the degree of polynomial \(r \). No endpoint restrictions are allowed.
16. FORECASTING

"The 1976 Olympics could no more lose money than I could have a baby."

Mr. Jean Drapeau
Mayor of Montreal, 1973

Forecasting can be implemented in SHAZAM with the FC command. Forecasts can be generated for models estimated with the AUTO, BOX, LOGIT, OLS, POOL, PROBIT and TOBIT commands. The FC command can use the estimated coefficients from the previous regression and then generate predicted values over any chosen set of observations. It is also possible to specify the coefficients with the COEF= option. The calculation of the forecast standard errors does not make any adjustments if lagged dependent variables are present. References for forecasting are Salkever [1976], Pagan and Nichols [1984] and Harvey [1990].

The standard linear regression equation is written:

\[Y_t = X'_t \beta + \varepsilon_t \quad \text{t} = 1, 2, \ldots, N \]

where \(Y_t \) is the dependent variable, \(X_t \) is a vector of explanatory variables, \(\beta \) is a Kx1 parameter vector and \(\varepsilon_t \) is a random error with zero mean and variance \(\sigma^2 \). Suppose that estimation with the OLS command yields the estimates \(\hat{\beta} \) and \(\hat{\sigma}^2 \). For an origin date \(N_0 \), predictions of \(Y_{N_0+t} \) are obtained as:

\[\hat{Y}_{N_0+t} = X'_{N_0+t} \hat{\beta} \quad \text{t} = 1, 2, \ldots, M \]

Forecast Standard Errors

There are two approaches to calculating forecast standard errors. One approach is to view the problem as predicting an individual value for \(Y \) for a given value of \(X \). The forecast error variance is estimated as:

\[V(Y_{N_0+t} - \hat{Y}_{N_0+t}) = \hat{\sigma}^2 \left(I + X'_{N_0+t} (X'X)^{-1} X_{N_0+t} \right) \]

where \(X \) is the NxK matrix of regressors. The square root of the above gives the forecast standard error.
An alternative approach, implemented with the MEANPRED option on the FC command, is to consider predicting the conditional mean of Y for a given value of X. In this case, the forecast error variance is estimated as:

$$V(\hat{Y}_{N_0+t}) = \hat{\sigma}^2 X_{N_0+t}'(X'X)^{-1} X_{N_0+t}$$

Forecast Evaluation

The mean squared error is computed as:

$$\text{MSE} = \frac{1}{M} \sum_{t=1}^{M} (Y_{N_0+t} - \hat{Y}_{N_0+t})^2$$

and the root mean squared error is $\sqrt{\text{MSE}}$. The mean absolute error is computed as:

$$\text{MAE} = \frac{1}{M} \sum_{t=1}^{M} \left| Y_{N_0+t} - \hat{Y}_{N_0+t} \right|$$

The mean squared percentage error is computed as:

$$\text{MSPE} = \frac{1}{M} \sum_{t=1}^{M} \left[100 \frac{Y_{N_0+t} - \hat{Y}_{N_0+t}}{Y_{N_0+t}} \right]^2$$

(when $Y_{N_0+t} = 0$ the observation is excluded from the formula).

Consider \bar{Y}, \bar{Y}_p, s_a, and s_p as the means and standard deviations of the series Y_{N_0+t} and \hat{Y}_{N_0+t} respectively for $t = 1, \ldots, M$. The calculation of the standard deviations uses a divisor of M. Denote r as the correlation between the observed and predicted values. SHAZAM reports two decompositions of the mean square error such that:

$$U^B + U^V + U^C = U^B + U^R + U^D = 1$$

where

$$U^B = \frac{(\bar{Y} - \bar{Y}_p)^2}{\text{MSE}}$$

is the proportion due to Bias

$$U^V = \frac{(s_a - s_p)^2}{\text{MSE}}$$

is the proportion due to Variance

$$U^C = \frac{2(1-r)s_p s_a}{\text{MSE}}$$

is the proportion due to Covariance

$$U^R = \frac{(s_p - rs_a)^2}{\text{MSE}}$$

is the proportion due to the Regression
\[U^D = \left(1 - r^2 \right) s_a^2 / \text{MSE} \]

is the disturbance proportion

The Theil inequality coefficient (described in Theil [1966, p. 28]) is calculated as:

\[U = \left[\frac{\sum_{t=2}^{M} (Y_{N_0+t} - \hat{Y}_{N_0+t})^2}{\sum_{t=2}^{M} (Y_{N_0+t} - Y_{N_0+t-1})^2} \right]^{1/2} \]

For a perfect forecast \(\hat{Y}_{N_0+t} = Y_{N_0+t} \) for all \(t \) and \(U = 0 \). A value of \(U = 1 \) results from a naive model where \(\hat{Y}_{N_0+t} = Y_{N_0+t-1} \). A value of \(U > 1 \) results from a model that forecasts less precisely compared to a naive model.

Prediction for the Model with AR(1) Errors

The AR(1) error model has disturbances of the form:

\[\varepsilon_t = \rho \varepsilon_{t-1} + v_t \]

where \(\rho \) is the autoregressive parameter, \(v_t \) is a random error with zero mean and variance \(\sigma_v^2 \) and \(E(\varepsilon^2) = \sigma_v^2 \Omega \). Suppose that estimation with the AUTO command yields the estimates \(\hat{\beta}, \hat{\rho}, \hat{\sigma_v^2} \) and \(\hat{\Omega} \). For further details see the chapter AUTOCORRELATION MODELS. The BLUP (best linear unbiased predictor) is given by:

\[\hat{Y}_{N+t} = X'_{N+t} \hat{\beta} + \hat{\rho} ' \left(Y_N - X' \hat{\beta} \right) \]

where \(Y_N \) and \(X_N \) are the final observations of the estimation sample period. The IBLUP (predictor) uses information from the immediately preceding observation to obtain a series of one-step ahead predictions as:

\[\hat{Y}_{N+t} = X'_{N+t} \hat{\beta} + \hat{\rho} ' \left(Y_{N+t-1} - X'_{N+t-1} \hat{\beta} \right) \]

The mean-square-error of prediction (see Judge et al. [1985, Equation 8.3.13 p. 318] and Harvey [1990, Equation 7.10, p. 215]) for \(t = 1, 2, \ldots, M \) is estimated as:

\[\text{MSE} \left(\hat{Y}_{N+t} \right) = \sigma_v^2 \left(\frac{1 - \hat{\rho}^2}{1 - \hat{\rho}^2} \right) + \sigma_v^2 \left(X_{N+t} - \hat{\rho} X_N \right)' \left(\hat{\Omega}^{-1} X \right)^{-1} \left(X_{N+t} - \hat{\rho} X_N \right) \]
The asymptotic MSE of the predictor based on Baillie [1979] (see Judge et al. [1985, Equation 8.3.14, p. 318] and Harvey [1990, Equation 7.11, p. 215]) can be estimated as:

\[
\text{AMSE} \left(\hat{Y}_{N+t} \right) \approx \text{MSE} \left(\hat{Y}_{N+t} \right) + \frac{2 \hat{\sigma}_\nu^2 t^2 \rho^{2(t-1)}}{N}
\]

where the last term is the MSE contribution due to estimation of \(\rho \). If the AFCSE option is specified with the BLUP or IBLUP option on the FC command then the asymptotic forecast standard error is reported as the square root of the above.

FC COMMAND OPTIONS

In general, the format of the FC command, when the estimated coefficients from the immediately preceding regression are being used, is:

```
estimation command
FC / options
```

where *estimation command* can be AUTO, BOX, LOGIT, OLS, POOL, PROBIT or TOBIT. Note that the reported forecast standard errors are not valid when the HETCOV or AUTCOV= options are specified on the OLS command. The *estimation command* can also be GLS, MLE, or 2SLS. For the latter cases the forecast standard errors are not available. The format when reading in all the coefficients is:

```
FC depvar indeps / options COEF=
```

where *depvar* is the variable name of the dependent variable, *indeps* is a list of variable names of the independent variables, *COEF*= is a required option used to specify the name of the variable in which the coefficients are stored, and *options* is a list of desired options.

When the coefficients from the previous regression are being used the variables must not be specified since SHAZAM has automatically saved them. However, when a new set of coefficients is being specified SHAZAM must be told which variables to use and the variable in which the coefficients have been saved must be specified on the *COEF*= option. The FC command is similar to the OLS command except no estimation is done. If the PREDICT= or RESID= options are used, the variable used for the results must have been previously defined with the DIM command. For a description of the DIM command see the chapter *MISCELLANEOUS COMMANDS AND INFORMATION*.
Options as described for OLS that are available are:

GF, LIST, BEG=, END=, PREDICT= and RESID=

Additional options are:

AFCSE
Used with the BLUP or IBLUP options to get Asymptotic Forecast Standard Errors as described above.

BLUP, IBLUP
Used in autoregressive models when the user wishes the predicted values to be adjusted with the lagged residual, to give the Best Linear Unbiased Predictions. BLUP only uses information from the first observation specified while IBLUP uses information from the Immediately preceding observation. Note, that correct forecast standard errors are only available for the first-order autoregressive model as described above.

DYNAMIC
Performs DYNAMIC forecasts for models with a lagged dependent variable. It is assumed that the lag variable is the first independent variable listed.

FIXED
Performs forecasts for FIXED effects POOL models. Also, see the CSNUM= and NCROSS= options.

MAX
This option is equivalent to the LIST and GF options.

MEANPRED
Calculate the forecast standard errors for the case of mean prediction. The default method is to calculate forecast standard errors for the case of individual prediction.

PERCENT
This option adds one line to every observation listing to display the PERCENTage change in the actual and predicted values (measured as the ratio of the current year to the previous year). In addition, it reports the ratio of the residual to the actual value. These ratios are printed in parentheses below the usual listing of actual, predicted, and residual values.

COEF=
Gives an input vector of model coefficients. If this is not specified then the estimated coefficients from the previous SHAZAM command are used.
CSNUM= Specifies which cross-section to use on a Pooled Cross-Section Time-Series model for POOL models.

ESTEND= Specifies the last observation of the estimation for AUTO and POOL models.

FCSE= Saves the ForeCast Standard Errors in the variable specified. The option is only available when the coefficients from the previous regression are used for forecasting. The variable to be used for the forecast standard errors must be defined before the estimation with the DIM command. Note that if the HETCOV or AUTCOV= options were used on the previous OLS command, the forecast standard errors are incorrect.

NCROSS= Specifies the Number of CROSS-sections in a Pooled Cross-Section Time-Series model for POOL models.

When the COEF= option is specified the following options may also be included:

NOCONSTANT No intercept is included in the regression. In this case, a value for the intercept should not be included.

UPPER Used with MODEL=TOBIT (see the chapter TOBIT REGRESSION).

LIMIT= Used with MODEL=TOBIT (see the chapter TOBIT REGRESSION).

MODEL= Specifies the type of MODEL. The available models are:

AUTO When MODEL=AUTO is used the autoregressive order is specified with the ORDER= option and the default is AR(1). The COEF= vector must contain K values for β (the intercept coefficient is last) followed by the values for the autoregressive parameters.

BOX When MODEL=BOX is used the COEF= vector must contain K values for β followed by K values for λ of each of the independent variables followed by the λ value on the dependent variable.

LOGIT Use Coefficients from LOGIT command estimation.

OLS The default is MODEL=OLS.
POOL When $MODEL=POOL$ is used the forecast must be done for only one Cross-Section. The relative position of the Cross-Section is specified with the $CSNUM=$ and $NC=$ options. The $COEF=$ vector must contain K values for β, then a ρ value for each cross-section, and finally a standard error estimate for each cross-section. (See the chapter *POOLED CROSS-SECTION TIME-SERIES*).

PROBIT Use coefficients from $PROBIT$ command estimation.

TOBIT When $MODEL=TOBIT$ is used the *normalized* coefficients (including the one on the dependent variable) must be read in.

$ORDER=$ Specifies the $ORDER$ of the model for $MODEL=AUTO$. This option is only available for $ORDER=1$ or $ORDER=2$.

$POOLSE=$ Specifies the standard error of the cross-section in a Pooled Cross-Section Time-Series model when $MODEL=POOL$.

$RHO=$ Specifies a value of the first-order autoregressive parameter for the regression when $MODEL=AUTO$ or $MODEL=BOX$ or $MODEL=POOL$ is specified.

$SRHO=$ Used with $MODEL=AUTO$ and $ORDER=2$ and the $RHO=$ option to specify a value of the Second-order RHO.

EXAMPLES

An example of the use of the FC command after an OLS estimation is:

```plaintext
sample 1 17
ols consume income price / list
fc / list
```

Another example is:

```plaintext
sample 1 10
ols consume income price / coef=beta
test income = -price
fc consume income price / beg=1 end=17 coef=beta
```
In the above example, the **OLS** command saves the coefficient vector with the **COEF** option. This is necessary since the **FC** command does not immediately follow the estimation command. On the **FC** command the dependent variable and the regressors are supplied along with the vector containing the estimated coefficients.

Another example of the use of the **FC** command is:

```
sample 1 10
ols consume income price
fc / list beg=11 end=17
```

The output from the final example is:

```
| SAMPLE 1 10
| OLS CONSUME INCOME PRICE
OLS ESTIMATION
  10 OBSERVATIONS  DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO:  1,  10

R-SQUARE =    .9810     R-SQUARE ADJUSTED =    .9755
VARIANCE OF THE ESTIMATE-SIGMA**2 =    10.568
STANDARD ERROR OF THE ESTIMATE-SIGMA =    3.2509
SUM OF SquARED ERRORS-SSE=    73.979
MEAN OF DEPENDENT VARIABLE =    121.45
LOG OF THE LIKELIHOOD FUNCTION =    -24.1954

VARIABLE     ESTIMATED STANDARD T-RATIO      PARTIAL STANDARDIZED ELASTICITY
NAME     COEFFICIENT  ERROR      7 DF  P-VALUE CORR. COEFFICIENT  AT MEANS
INCOME     .55817      .2456  2.273     .057       .652       .1462       .4834
PRICE     -1.5320      .1098 -13.95      .000     -.982     -.8976     -1.1060
CONSTANT   197.07      32.44  6.075     .001       .917       .0000      1.6226

| FC / LIST BEG=11 END=17
DEPENDENT VARIABLE = CONSUME        7 OBSERVATIONS
REGRESSION COEFFICIENTS
  .558165798286  -1.53203247506       197.070728749

OBS.   OBSERVED     PREDICTED     CALCULATED  STD. ERROR
NO.   VALUE        VALUE        RESIDUAL
 11   158.50     159.92        -1.4226       4.863       *I
 12   140.60     154.57       -13.968       5.729         I
 13   136.20     153.44       -17.241       5.472         I
 14   168.00     170.96       -2.9628       6.191         I
 15   154.30     162.76       -8.4646       4.898         I
 16   149.00     162.62       -13.624       5.016         I
 17   165.50     161.09       4.4053       4.613       *I

SUM OF ABSOLUTE ERRORS=   62.088
R-SQUARE BETWEEN OBSERVED AND PREDICTED =    .6833
RUNS TEST:    2 RUNS,    1 POS,    0 ZERO,    6 NEG  NORMAL STATISTIC =    -1.5811
MEAN ERROR =    -7.6111
SUM-SQUARED ERRORS =    779.82
MEAN SQUARE ERROR =    111.40
MEAN ABSOLUTE ERROR=    8.8697
ROOT MEAN SQUARE ERROR =    10.555
```
The next example shows forecasting with a model with AR(1) errors. The AUTO command is used for estimation and the AR(1) parameter is estimated using the ML option. The first 13 observations are used for estimation. Forecasts are then made for observation 13 to 17 using the BLUP option on the FC command. In order to get correct estimates of the forecast standard error for the 14th through the 17th predictions, the forecast must begin at the 13th observation and end at the 17th using the BEG= and END= options in the FC command. This is necessary since each forecast must be adjusted by the lagged residual to get correct forecast standard errors. Note carefully the information given in the output:

. . . FORECAST STD. ERRORS USE JUDGE (1985, EQ. 8.3.13)
IGNORE FORECASTS AND STD. ERRORS BEFORE OBSERVATION 14.

The forecasts and standard errors have been saved using the PREDICT= and FCSE= options on the FC command. Note that the DIM command is needed to allocate space for these variables. These variables could then be used as input for graphical display of the forecast. The LIST option on the FC command is used to obtain a listing of the predictions and prediction errors. The SHAZAM commands for the estimation and forecasting are:

```
sample 1 13
dim fc 17 se 17
auto consume income price / ml
fc / blup list beg=13 end=17 model=auto predict=fc fcse=se
```

The SHAZAM output is:

```
|_SAMPLE 1 13
|_DIM FC 17 SE 17
|_AUTO CONSUME INCOME PRICE / ML
DÉPENDENT VARIABLE = CONSUME
..NOTE..R-SQUARE,ANOVA,RESIDUALS DONE ON ORIGINAL VARS
DN OPTION IN EFFECT - DIVISOR IS N
MAXIMUM LIKELIHOOD ESTIMATION 13 OBSERVATIONS
BY COCHRANE-ORCUTT TYPE PROCEDURE WITH CONVERGENCE = .00100
ITERATION RHO LOG L.F. SSE
1 .00000 -37.1885 232.38
2 .34495 -36.5653 209.09
```
LOG L.F. = -36.5653 AT RHO = .34853

RHO .34853 .06758 .25996 1.34070

R-SQUARE = .9617 R-SQUARE ADJUSTED = .9541

VARIANCE OF THE ESTIMATE-SIGMA**2 = 16.080
STANDARD ERROR OF THE ESTIMATE-SIGMA = 4.0100
SUM OF SQUARED ERRORS-SSE= 209.04
MEAN OF DEPENDENT VARIABLE = 126.91
LOG OF THE LIKELIHOOD FUNCTION = -36.5653

| 3 .34847 -36.5653 209.04 |
| 4 .34853 -36.5653 209.04 |

LOG L.F. = -36.5653 AT RHO = .34853

ASYMPTOTIC ESTIMATE VARIANCE ST.ERROR T-RATIO
RHO .34853 .06758 .25996 1.34070

| 1.0867 .2580 4.212 0.000 0.800 0.2994 0.8861 |
| -1.3087 .1044 -12.54 0.000 -0.970 -0.9380 -0.8442 |
| 121.50 27.43 4.429 0.000 0.814 0.0000 0.9574 |

FC / BLUP LIST BEG=13 END=17 MODEL=AUTO PREDICT=FC FCSE=SE
..ASSUMING ESTIMATION ENDED AT OBSERVATION 13
DEPENDENT VARIABLE = CONSUME 5 OBSERVATIONS
REGRESSION COEFFICIENTS
1.0866458513 -1.30867753239 121.501461408
AUTOCORRELATION RHO .3485269810734
USER SPECIFIED RHO= .34853
USER SPECIFIED SRHO= .00000
..FORECAST STD. ERRORS USE JUDGE(1985, EQ. 8.3.13)
IGNORE FORECASTS AND STD. ERRORS BEFORE OBS. 14

<table>
<thead>
<tr>
<th>OBS.</th>
<th>OBSERVED</th>
<th>PREDICTED</th>
<th>CALCULATED</th>
<th>STD. ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>136.20</td>
<td>143.02</td>
<td>-6.8240</td>
<td>4.879</td>
</tr>
<tr>
<td>14</td>
<td>168.00</td>
<td>156.35</td>
<td>11.655</td>
<td>4.830</td>
</tr>
<tr>
<td>15</td>
<td>154.30</td>
<td>153.82</td>
<td>0.48106</td>
<td>4.947</td>
</tr>
<tr>
<td>16</td>
<td>149.00</td>
<td>153.75</td>
<td>-4.7514</td>
<td>5.082</td>
</tr>
<tr>
<td>17</td>
<td>165.50</td>
<td>153.97</td>
<td>11.525</td>
<td>5.053</td>
</tr>
</tbody>
</table>

BLUP IS ACTIVE - PREDICTED VALUES ADJUSTED WITH LAGGED RESIDUALS

SUM OF ABSOLUTE ERRORS= 35.237
R-SQUARE BETWEEN OBSERVED AND PREDICTED = .7513
RUNS TEST: 4 RUNS, 3 POS, 0 ZERO, 2 NEG NORMAL STATISTIC = .6547
MEAN ERROR = 2.4172
SUM-SQUARED ERRORS = 338.04
MEAN SQUARE ERROR = 67.609
MEAN ABSOLUTE ERROR= 7.0473
ROOT MEAN SQUARE ERROR = 8.2225
MEAN SQUARED PERCENTAGE ERROR= 26.399
THEIL INEQUALITY COEFFICIENT U = .441

DECOMPOSITION
PROPORTION DUE TO BIAS = .86420E-01
PROPORTION DUE TO VARIANCE = .70030
PROPORTION DUE TO COVARIANCE = .21328

DECOMPOSITION
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion due to bias</td>
<td>.86420E-01</td>
</tr>
<tr>
<td>Proportion due to regression</td>
<td>.42188</td>
</tr>
<tr>
<td>Proportion due to disturbance</td>
<td>.49170</td>
</tr>
</tbody>
</table>
"I know millions of things that won’t work. I’ve certainly learned a lot."
Thomas A. Edison

The **FUZZY** command facilitates the construction of fuzzy-set econometric models. Although the use of fuzzy sets dates from Zadeh [1965], the particular methodology described here is very recent. It is discussed more fully and applied to economic data by Lindström [1998] in the case of aggregate investment behaviour, and by Draeseke and Giles [1999, 2000] in the case of the underground economy. Fuzzy set econometric modelling provides a means of using the information associated with economic concepts and linguistic economic variables to predict the value of another economic variable. A fuzzy set maps from a regular set to [0,1]. Membership of a fuzzy set is not crisp, but involves a numerical *degree of membership* that indicates the level of subjective association that is placed on the given concept. Degrees of membership need not sum to unity. In fuzzy set theory the union operator is replaced by the *max* operator; intersection is replaced by *min*; and complement is replaced by subtraction from unity.

Suppose that we wish to use two input (or causal) variables to explain (predict) the value of an output (dependent) variable of interest. The dependent variable is usually unobservable, and is not needed for the fuzzy modelling. We first define fuzzy sets associated with the values of the two causal variables, and then we assign association values with the subjective levels for each variable in each period. Finally, decision rules are used to establish a level in [0,1] for the indicator (or index). The decision rules incorporate the use of fuzzy operators. The prediction for the dependent variable is in the form of an index that can then be scaled according to some suitable metric.

More specifically, the steps involved are:

(i) For each input variable, assign 5 break-points, based on a moving-average of the sample values. Once *normal* values have been established for each variable in each period, calculate the other break-points by taking one and two sample standard deviations around the *normal* value. The regions between break-points are termed *membership levels*.

(ii) Associate each value for each input variable with one or two membership levels, using a triangular *membership function*.
Create decision rules that will determine how particular levels of association for each of the input variables are combined to establish the 5 levels of association for the dependent variable. The 25 decision rules are represented in a (5x5) matrix. A row of this matrix corresponds to a membership level for the first causal variable. A column corresponds to a membership level for the second causal variable.

(iv) Provide degrees of association to be used with these decision rules. The 25 degrees of association are represented in a (5x5) matrix. A row of this matrix corresponds to a membership level for the first causal variable. A column corresponds to a membership level for the second causal variable.

(v) Weights are assigned to each of the 5 levels of association for the dependent variable.

(vi) The decision rules, the degrees of association, the weights, and the fuzzy operators max and min are used with each combination of levels for the two causal variables to generate an index value for the dependent variable.

The FUZZY command is currently limited to handle only two input (causal) variables.

FUZZY COMMAND OPTIONS

In general, the format of the FUZZY command is:

```
FUZZY x1 x2 / RULES=rulemat DEGREES=degreemat options
```

where \(x1 \) and \(x2 \) are input variables and \(\text{options} \) is a list of desired options. \(\text{rulemat} \) and \(\text{degreemat} \) are 5 x 5 matrices of decision rules and degrees, respectively.

Options that start with \(\text{GRAPH} \) prepare graphs with the GNUPLTO software as described in the \(\text{PLOTS AND GRAPHS} \) chapter.

Options as defined for the OLS command that are available are:

\(\text{DUMP}, \text{BEG=} \) and \(\text{END=} \)

Additional options available on the FUZZY command are:

\(\text{GRAPHDATA} \) Provides a graphics plot of the data.
GRAPHRULE Provides a graphics plot of the rule surface.

MEDIAN Specifies to center the data around the median instead of the mean.

NOLIST Suppresses the List of computed index values and rules.

NOPMATRIX Suppresses printing of the rules and degrees matrices.

NOSTANDARD Assumes that the input data is standardized.

PASSOC Prints the table of Association values.

PBREAK Prints the table of Breakpoints.

CMA= Specifies the number of periods to start the Cumulative Moving Average. If this is used CMA−1 observations will be lost.

PREDICT= Saves the calculated index in the variable specified.

RMA= Specifies the number of periods for the Regular Moving Average. If this is used RMA−1 observations will be lost.

WEIGHT= Specifies a 5 element vector of weights to replace the default of (0, 0.25, 0.5, 0.75, 1.0).

EXAMPLES

Draeseke and Giles [1999, 2000] set the task of measuring the size of the New Zealand underground economy (UE) on an annual basis. The two causal variables are the effective tax rate (TR) and an index of the degree of regulation in New Zealand (REGS). The SHAZAM output below shows the use of the FUZZY command to generate a time series index for the underground economy.

```
|  TIME 1955 1
|  _SAMPLE 1955.0 1994.0
|  _READ (TREGS.DAT) YEAR TR REGS
|  UNIT 88 IS NOW ASSIGNED TO: TREGS.DAT
|    3 VARIABLES AND   40 OBSERVATIONS STARTING AT OBS  1
|  _* Matrix of decision rules
|  _READ R / ROWS=5 COLS=5
|    5 ROWS AND      5 COLUMNS, BEGINNING AT ROW  1
|  _* Matrix of degrees
|  _READ D / ROWS=5 COLS=5
|    5 ROWS AND      5 COLUMNS, BEGINNING AT ROW  1
```
|_SAMPLE 1962.0 1994.0 |
|_FUZZY TR REGS / RMA=7 RULES=R DEGREES=D |
Fuzzy Econometrics
Weights:
0.0000 0.2500 0.5000 0.7500 1.0000
Rules Matrix:
1.00 1.00 2.00 2.00 3.00
1.00 2.00 2.00 3.00 4.00
2.00 2.00 3.00 4.00 4.00
2.00 3.00 4.00 4.00 5.00
3.00 2.00 2.00 5.00 5.00
Degrees Matrix:
1.00 0.80 1.00 0.80 0.80
1.00 1.00 0.80 1.00 1.00
1.00 0.80 1.00 0.80 1.00
1.00 1.00 0.80 1.00 1.00
0.80 0.80 1.00 0.80 1.00
Regular Moving Average = 7 Observations Lost = 6
Active Rules and Fuzzy Index
<table>
<thead>
<tr>
<th>OBS</th>
<th>0.000</th>
<th>0.250</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.000</td>
<td>0.5871</td>
<td>0.2661</td>
<td>0.1033</td>
<td>0.0000</td>
<td>0.3735</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.4133</td>
<td>0.4693</td>
<td>0.0000</td>
<td>0.6329</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.1778</td>
<td>0.0000</td>
<td>0.5705</td>
<td>0.1422</td>
<td>0.6901</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.8107</td>
<td>0.1893</td>
<td>0.7973</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.4668</td>
<td>0.0700</td>
<td>0.7826</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.3048</td>
<td>0.5453</td>
<td>0.0000</td>
<td>0.6604</td>
</tr>
<tr>
<td>13</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5875</td>
<td>0.1788</td>
<td>0.8083</td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1055</td>
<td>0.8237</td>
<td>0.9716</td>
</tr>
<tr>
<td>15</td>
<td>0.000</td>
<td>0.0851</td>
<td>0.0000</td>
<td>0.5921</td>
<td>0.1893</td>
<td>0.6262</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>0.3196</td>
<td>0.0000</td>
<td>0.6614</td>
<td>0.2709</td>
<td>0.6764</td>
</tr>
<tr>
<td>17</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5831</td>
<td>0.3268</td>
<td>0.8398</td>
</tr>
<tr>
<td>18</td>
<td>0.000</td>
<td>0.3871</td>
<td>0.5484</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3965</td>
</tr>
<tr>
<td>19</td>
<td>0.000</td>
<td>0.0081</td>
<td>0.9914</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.4980</td>
</tr>
<tr>
<td>20</td>
<td>0.000</td>
<td>0.1125</td>
<td>0.0000</td>
<td>0.8204</td>
<td>0.1437</td>
<td>0.7311</td>
</tr>
<tr>
<td>21</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.3739</td>
<td>0.5008</td>
<td>0.0000</td>
<td>0.6431</td>
</tr>
<tr>
<td>22</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.3163</td>
<td>0.6003</td>
<td>0.0000</td>
<td>0.6637</td>
</tr>
<tr>
<td>23</td>
<td>0.000</td>
<td>0.5912</td>
<td>0.3008</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3343</td>
</tr>
<tr>
<td>24</td>
<td>0.1930</td>
<td>0.5436</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1845</td>
</tr>
<tr>
<td>25</td>
<td>0.000</td>
<td>0.2258</td>
<td>0.4685</td>
<td>0.4252</td>
<td>0.0000</td>
<td>0.5445</td>
</tr>
<tr>
<td>26</td>
<td>0.000</td>
<td>0.0621</td>
<td>0.0000</td>
<td>0.4845</td>
<td>0.0497</td>
<td>0.7188</td>
</tr>
<tr>
<td>27</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0434</td>
<td>0.8562</td>
<td>0.0000</td>
<td>0.7379</td>
</tr>
<tr>
<td>28</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3656</td>
<td>0.5075</td>
<td>0.8953</td>
</tr>
<tr>
<td>29</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0311</td>
<td>0.5689</td>
<td>0.0000</td>
<td>0.6422</td>
</tr>
<tr>
<td>30</td>
<td>0.000</td>
<td>0.1941</td>
<td>0.7574</td>
<td>0.0954</td>
<td>0.0000</td>
<td>0.4764</td>
</tr>
<tr>
<td>31</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.3274</td>
<td>0.5381</td>
<td>0.0000</td>
<td>0.6554</td>
</tr>
<tr>
<td>32</td>
<td>0.000</td>
<td>0.3721</td>
<td>0.0000</td>
<td>0.5023</td>
<td>0.1149</td>
<td>0.5910</td>
</tr>
<tr>
<td>33</td>
<td>0.000</td>
<td>0.6942</td>
<td>0.1322</td>
<td>0.0024</td>
<td>0.0000</td>
<td>0.2913</td>
</tr>
</tbody>
</table>

The results show that, for 1968 (corresponding to observation 7), the UNE index value is 0.3735.
18. GENERALIZED ENTROPY

"Many economic-statistical models are ill-posed or under-determined. Consequently, it is important that we learn to reason in these logically indeterminate situations."

Ed Jaynes, 1985

Given a general linear model of the form: \[Y = X\beta + \varepsilon \]

SHAZAM will recover estimates of \(\beta \) and \(\varepsilon \) according to the generalized maximum entropy (GME) and generalized cross-entropy (GCE) methods described in Golan, Judge and Miller [1996]. GME and GCE employ limited prior information, and the methods are robust alternatives to OLS and other estimation procedures. Users should be familiar with generalized entropy methods before attempting this procedure.

The unknowns are reparameterized as:

\[
\beta = Zp = \begin{bmatrix}
z'_1 & 0 & \ldots & 0 \\
0 & z'_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & z'_K
\end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_K \end{bmatrix}
\]

and

\[
\varepsilon = Vw = \begin{bmatrix}
v'_1 & 0 & \ldots & 0 \\
0 & v'_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & v'_N
\end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{bmatrix}
\]

where \(z_k \) is a vector of \(M \) (\(2 \leq M \)) support points for \(\beta_k \) and these are specified with the \texttt{ZENTROPY=} option on the \texttt{GME} command. \(Z \) is a \(K \times KM \) matrix and \(p \) is a \(KM \times 1 \) vector of weights. \(v_t \) is a vector of \(J \) (\(2 \leq J \)) support points for \(\varepsilon_t \) and these are specified with the \texttt{VENTROPY=} option.

The general linear model is rewritten as: \[Y = X\beta + \varepsilon = XZp + Vw \]

The generalized maximum entropy (GME) problem is to choose \(p \) and \(w \) to maximize an entropy measure. If prior distributions are non-uniform the problem can be extended to employ a generalized cross-entropy (GCE) criterion. Let \(q \) be the \(KM \times 1 \) vector of prior weights for \(\beta \) and let \(u \) be the \(NJ \times 1 \) vector of prior weights on \(\varepsilon \). Values for \(q \) and \(u \) can be specified with the \texttt{QPRIOR=} and \texttt{UPRIOR=} options respectively. The GCE problem is to select \(p \) and \(w \) to minimize:
subject to the set of data consistency constraints:

\[
Y = X\beta + Vw
\]

and normalization constraints on \(p \) and \(w \). This is a constrained minimization problem. A Lagrangian function can be stated with \(\lambda \) as the \(N \times 1 \) vector of Lagrange multipliers on the data consistency constraints. The GCE solutions \(\tilde{p} \) and \(\tilde{w} \) are functions of \(\lambda \). A solution method, that is implemented in SHAZAM, is to specify a dual version of the GCE problem. Numerical optimisation methods are then used to choose \(\lambda \) to maximize the objective function. Further discussion on the numerical solution procedure is in Golan, Judge and Miller [1996, Chapter 17].

Normalized entropy measures for the recovered coefficients are calculated as:

\[
\frac{\sum_{i=1}^{M} \tilde{p}_{ki} \ln(\tilde{p}_{ki})}{\sum_{i=1}^{M} q_{ki} \ln(q_{ki})} \quad \text{for} \quad k = 1, \ldots, K
\]

The normalized entropy measure for \(p \) is:

\[
\frac{\sum_{k=1}^{K} \sum_{i=1}^{M} \tilde{p}_{ki} \ln(\tilde{p}_{ki})}{\sum_{k=1}^{K} \sum_{i=1}^{M} q_{ki} \ln(q_{ki})}
\]

GME COMMAND OPTIONS

In general, the format of the GME command is:

GME depvar indeps / options

where **depvar** is a vector of \(N \) observations. If the set of unknown model parameters, \(\beta \), is a probability distribution, then the support of the distribution is specified in **indeps**. For a regression model, **indeps** should include the \(K \) vectors of explanatory variables, each containing \(N \) observations. Unlike the OLS command, GME does not require \(N > K \).

Options as defined for the OLS command that are available are:

LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, NOCONSTANT, PCOV, RSTAT, BEG=, END=, COEF=, COV=, PREDICT=, RESID=, STDERR= and TRATIO=
Options as defined for the *NL* command that are available are:

\textbf{CONV=, ITER=, PITER=} and \textbf{START=} \\

Additional options available on the *GME* command are:

\textbf{DEVIATION} \hspace{1em} \text{Specifies that the estimation is to use variables measured as deviations from their mean. This option automatically turns on the NOCONSTANT option.}

\textbf{LOGEPS=} \hspace{1em} \text{Specifies a small constant to be included in each logarithmic term of the objective function in order to avoid numerical underflow. The default value is 1E–8.}

\textbf{QPRIOR=} \hspace{1em} \text{Specifies a (K x M) matrix of prior probability distributions on the supports specified in ZENTROPY=}. If this option is not used, the priors are assumed to be discrete uniform.

\textbf{UPRIOR=} \hspace{1em} \text{Specifies a (N x J) matrix of prior probability distributions on the supports specified in VENTROPY=}. The matrix must be adjusted appropriately if the data set contains missing values. That is, N must be set to the number of observed values. If this option is not used, the priors are assumed to be discrete uniform.

\textbf{VENTROPY=} \hspace{1em} \text{Specifies a (N x J) matrix containing the J support points for each of the N unknown disturbances. The matrix must be adjusted appropriately if the data set contains missing values. That is, N must be set to the number of observed values. If this option is not used, the disturbance term, }\varepsilon, \text{ is ignored.}

\textbf{ZENTROPY=} \hspace{1em} \text{Specifies a (K x M) matrix containing the M support points for each of the K unknown parameters. If this option is not used, SHAZAM recovers a probability distribution for the K elements in }\text{indeps.}

\textbf{EXAMPLES}

This example shows the estimation of a demand equation for beer using a data set from Griffiths, Hill and Judge [1993, Table 11.1, p. 372]. The variables are quantity demanded \((Q)\), price of beer \((PB)\), price of other liquor \((PL)\), price of other goods \((PR)\) and income \((Y)\).
The SHAZAM commands that follow first estimate a log-linear equation by OLS. The GME method is then applied.

* Beer demand data set
 sample 1 30
 read (beer.dat) q pb pl pr y

* Consider a log-linear model
 genr lq=log(q)
 genr c=1
 genr lpb=log(pb)
 genr lpl=log(pl)
 genr lpr=log(pr)
 genr ly=log(y)

* OLS estimation
 ols lq c lpb lpl lpr ly / noconstant loglog

* Specify the parameter and error support matrices Z and V
 dim z 5 5 v 30 3
 sample 1 5
 genr z:1=-5
 genr z:2=-2.5
 genr z:3=0
 genr z:4=2.5
 genr z:5=5
 sample 1 30
 genr v:1=-1
 genr v:2=0
 genr v:3=1

* Solve the dual problem and get the optimal Lagrange multipliers
 gme lq c lpb lpl lpr ly / noconstant zentropy=z ventropy=v loglog

The OLS estimation results are:

<table>
<thead>
<tr>
<th>OLS ESTIMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 OBSERVATIONS</td>
</tr>
<tr>
<td>NOTE: SAMPLE RANGE SET TO: 1, 30</td>
</tr>
<tr>
<td>WARNING: VARIABLE C IS A CONSTANT</td>
</tr>
<tr>
<td>R-SQUARE = .8254</td>
</tr>
<tr>
<td>VARIANCE OF THE ESTIMATE-SIGMA**2 = .35968E-02</td>
</tr>
<tr>
<td>STANDARD ERROR OF THE ESTIMATE-SIGMA = .59973E-01</td>
</tr>
<tr>
<td>SUM OF SQUARED ERRORS-SSE = .89920E-01</td>
</tr>
<tr>
<td>MEAN OF DEPENDENT VARIABLE = 4.0185</td>
</tr>
<tr>
<td>LOG OF THE LIKELIHOOD FUNCTION(IF DEPVAR LOG) = -75.9736</td>
</tr>
<tr>
<td>RAW MOMENT R-SQUARE = .9998</td>
</tr>
</tbody>
</table>
The GME solution follows.

| GME LQ C LPB LPL LPR LY / NOCONSTANT ZENTROPY=Z VENTROPY=V LOGLOG |
| --- | --- | --- | --- | --- | --- | --- |
| INITIAL STATISTICS : |
| TIME = 5.220 SEC. | ITER. NO. = 1 | FUNCTION EVALUATIONS = 1 |
| GENERALIZED MAXIMUM ENTROPY |
| FUNCTION VALUE= -41.00556 |
| COEFFICIENTS |
.0000000	.0000000	.0000000	.0000000	.0000000
.0000000	.0000000	.0000000	.0000000	.0000000
.0000000	.0000000	.0000000	.0000000	.0000000
.0000000	.0000000	.0000000	.0000000	.0000000
.0000000	.0000000	.0000000	.0000000	.0000000
GRADIENT				
4.403054	4.041295	4.160444	4.180522	4.160444
4.062166	4.122284	4.178992	4.056989	4.151040
3.943522	3.992681	3.945458	3.923564	3.953165
3.912023	3.835142	3.845883	3.945458	3.910021
NORMALIZED ENTROPY FOR COEFFICIENT 1 = .99983				
NORMALIZED ENTROPY FOR COEFFICIENT 2 = .98237				
NORMALIZED ENTROPY FOR COEFFICIENT 3 = .99906				
NORMALIZED ENTROPY FOR COEFFICIENT 4 = .99938				
NORMALIZED ENTROPY FOR COEFFICIENT 5 = .99365				

| VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY |
| --- | --- | --- | --- | --- |
| NAME | COEFFICIENT | ERROR | 25 DF | P-VALUE | CORR. COEFFICIENT | AT MEANS |
| C | -3.2432 | 3.743 | -0.8665 | .394 | -.171 | .0000 | -3.2432 |
| LPB | -1.0204 | .2390 | -4.269 | .000 | -.649 | -1.6871 | -1.0204 |
| LPL | -.58293 | .5602 | -1.041 | .308 | -.204 | -.4095 | -.5829 |
| LPR | .20954 | .7969E-01 | 2.629 | .014 | .465 | .3971 | .2095 |
| LY | .92286 | .4155 | 2.221 | .036 | .406 | .9737 | .9229 |
NORMALIZED ENTROPY FOR P= .99486
NORMALIZED ENTROPY FOR W= .99774

R-SQUARE = .8072 R-SQUARE ADJUSTED = .7764
VARIANCE OF THE ESTIMATE-SIGMA**2 = .3971E-02
STANDARD ERROR OF THE ESTIMATE-SIGMA = .63016E-01
SUM OF SQUARED ERRORS-SSE= .99274E-01
MEAN OF DEPENDENT VARIABLE = 4.0185
LOG OF THE LIKELIHOOD FUNCTION(IF DEPVAR LOG) = -79.6664
VARIANCE OF THE ESTIMATE = .39710E-02
STANDARD ERROR OF THE ESTIMATE = .63016E-01
SUM OF SQUARED ERRORS = .99274E-01
MEAN OF DEPENDENT VARIABLE = 4.0185
LOG OF THE LIKELIHOOD FUNCTION(IF DEPVAR LOG) = -79.6664

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT</th>
<th>AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>.82291E-01</td>
<td>.5140E-03</td>
<td>160.1</td>
<td>.000</td>
<td>1.000</td>
<td>.000</td>
</tr>
<tr>
<td>LPB</td>
<td>-.83969</td>
<td>.7717E-01</td>
<td>-10.88</td>
<td>.000</td>
<td>-.909</td>
<td>-1.3883</td>
</tr>
<tr>
<td>LPL</td>
<td>-.19429</td>
<td>.9870E-01</td>
<td>-1.969</td>
<td>.060</td>
<td>-.366</td>
<td>-.1365</td>
</tr>
<tr>
<td>LPR</td>
<td>.15767</td>
<td>.6495E-01</td>
<td>2.428</td>
<td>.023</td>
<td>.437</td>
<td>.2988</td>
</tr>
<tr>
<td>LY</td>
<td>.50497</td>
<td>.1945E-01</td>
<td>25.96</td>
<td>.000</td>
<td>.982</td>
<td>.2217</td>
</tr>
</tbody>
</table>

For the beer demand model, the parameter estimates may be interpreted as elasticities. Given that GME is a shrinkage estimator, the GME solution gives elasticities that are typically smaller in absolute value relative to the OLS estimates. That is, the parameter vector recovered by GME is a "shrunken" version of the OLS estimated parameter vector.

Note that the approximate standard errors and t-ratios are only valid in some settings. For further details see Golan, Judge and Miller [1996, Chapter 6].
19. GENERALIZED LEAST SQUARES

"50 years hence...we shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium."

Winston Churchill
Member of British Parliament, 1932

The GLS command performs Generalized Least Squares regressions. The method of generalized least squares is discussed in Greene [2003, Chapter 10; 2000, Chapter 11], Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 8] and other econometrics textbooks.

Consider the linear model \(Y = X\beta + \varepsilon \) where \(Y \) is an \(N \times 1 \) vector of observations on the dependent variable, \(X \) is an \(N \times K \) matrix of explanatory variables, \(\beta \) is a vector of unknown parameters and \(\varepsilon \) is a random error vector with zero mean and covariance matrix:

\[
E(\varepsilon \varepsilon') = \sigma^2 \Omega
\]

The \(N \times N \) matrix \(\Omega \) is a known positive definite symmetric matrix that allows for a general error covariance structure and \(\sigma^2 \) is an unknown scalar. The GLS estimate is:

\[
\hat{\beta} = \left(X' \Omega^{-1} X\right)^{-1} X' \Omega^{-1} Y
\]

Another way of approaching the analysis is to express the \(\Omega^{-1} \) matrix as \(\Omega^{-1} = P'P \) where \(P \) is a non-singular \(N \times N \) lower triangular matrix. The matrix \(P \) is used to transform the model to the form:

\[
PY = PX\beta + P\varepsilon
\]

Then OLS can be applied to the transformed model to get the GLS estimate. The transformed residuals are obtained as:

\[
\hat{\nu} = PY - PX \hat{\beta}
\]

and the untransformed residuals (available with the UT option) are:

\[
e = Y - X\hat{\beta}
\]
The estimate of σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{N-K}(\hat{v}'\hat{v}) = \frac{1}{N-K}(e'\Omega^{-1}e)$$

When the DN option is used the divisor for $\hat{\sigma}^2$ is N instead of N–K. The estimated covariance matrix for $\hat{\beta}$ is:

$$\hat{\sigma}^2(X'\Omega^{-1}X)^{-1}$$

With the assumption of normality the log-likelihood function can be written as:

$$-\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln \sigma^2 - \frac{1}{2}\ln |\Omega| - \frac{1}{2\sigma^2}(Y - X\beta)'\Omega^{-1}(Y - X\beta)$$

This is evaluated as:

$$-\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln \hat{\sigma}^2 + \sum_{t=1}^{N} \ln(P_{tt}) - \frac{N}{2}$$

where $\hat{\sigma}^2 = \frac{1}{N}(\hat{v}'\hat{v})$

and P_{tt} is the t^{th} diagonal element of P.

The Buse R^2 (see Buse [1973]) reported on the SHAZAM output gives a measure of goodness-of-fit and is calculated as:

$$R^2 = 1 - \frac{e'\Omega^{-1}e}{(Y - DY)'\Omega^{-1}(Y - DY)}$$

with $D = \frac{jj'\Omega^{-1}}{j'\Omega^{-1}j}$

where j is an $N \times 1$ vector of ones. The expression $Y-DY$ transforms the observations to deviations from a weighted mean. When the NOCONSTANT option is specified the raw moment R^2 (described in Theil [1961, p. 221]) is calculated by replacing $Y-DY$ with Y. The raw moment R^2 is meaningful when the equation does not have an intercept.

The GLS command allows for general error covariance structures. It is useful to note that some special cases are implemented in other SHAZAM commands. For example, the WEIGHT= option on the OLS command (see the chapter ORDINARY LEAST SQUARES) provides weighted least squares estimation and models with autoregressive errors (see the chapter AUTOCORRELATION MODELS) can be estimated with the AUTO command. Another case of generalized least squares estimation is implemented with the POOL command (see the chapter POOLED CROSS-SECTION AND TIME-SERIES).
GLS COMMAND OPTIONS

In general, the format of the GLS command is:

```
GLS depvar indeps / options
```

where `depvar` is the dependent variable, `indeps` is a list of the independent variables, and `options` is a list of desired options. One of `OMEGA=`, `OMINV=` or `PMATRIX=` is required to tell SHAZAM which matrix to use for estimation. For example, to give SHAZAM the Ω matrix the `OMEGA=` option is used.

Options described for the OLS command that may be used are:

```
ANOVA, DLAG, DN, GF, HETCOV, LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX, NOCONSTANT, PCOR, PCOV, RESTRICT, RSTAT, BEG=, END=, COEF=, COV=, PREDICT=, STDERR= and TRATIO=
```

Other options are:

BLUP
The predicted values are adjusted using information obtained from previous period residuals according to the transformation specified by the P matrix. This option is not effective in forecasts using the GLS coefficients.

DUMP
Prints out the Ω, Ω^{-1} and P matrices. It is important to be aware that each of these matrices is of the order N x N and in large samples could require many pages of printout. The DUMP option is useful for checking to see if the input of the matrix has been done correctly.

FULLMAT
If the FULLMAT option is not specified, SHAZAM assumes that the specified matrix contains the diagonals of Ω (`OMEGA=`), Ω^{-1} (`OMINV=`) or the P matrix (`PMATRIX=`).

NOMULSIGSQ
Uses $\left(x'\Omega^{-1}x\right)^{-1}$ as the estimate of the covariance matrix of the parameter estimates. It is NOT MULTIlied by $\hat{\sigma}^2$.

UT
The estimated coefficients will be used with the original data to compute predicted values and residuals that are UnTransformed. Without this option, the residual output and predicted values given are transformed.
OMEGA= Specifies the matrix to be used for estimation as Ω (OMEGA=), Ω^{-1} (OMINV=) or the P matrix (PMATRIX=). One of these options must be specified on each GLS command. The FULLMAT option must be used if the complete matrix, rather than just the diagonals of the matrix, is given. When just the diagonals are given the matrix must be set-up as follows. The main diagonal is entered in the first column in rows 1 to N. The first lower diagonal (if required) is entered in the second column in rows 1 to $N-1$ (the element in row N is ignored). The second lower diagonal (if required) is entered in the third column in rows 1 to $N-2$ (the elements in rows $N-1$ and N are ignored), etc.

OMINV= RESID= Saves the RESIDuals in the variable specified. For details on which residuals are saved see the UT and BLUP options.

PMATRIX= The available temporary variables on the GLS command are:

$ADR2, \$ANF, \$DF, \$DW, \$ERR, \$K, \$LLF, \$N, \$R2, \$R2OP, \$RAW, \$RHO, \$SIG2, \$SSE, \$SSR, \$SST, \$ZANF, \$ZDF, \$ZSSR$ and $\$ZSST$.

For more information on temporary variables see the chapter MISCELLANEOUS COMMANDS AND INFORMATION and the chapter ORDINARY LEAST SQUARES.

EXAMPLE

The GLS command can be demonstrated by estimating a model with first-order autoregressive errors for the Theil Textile data set. (Note that most SHAZAM users would use the AUTO command to estimate an AR(1) error model.) Consider an autoregressive parameter with a value of $\rho = 0.8$. The form of the P matrix (see Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Equation 9.5.29, p.390]) is:

$$
\begin{bmatrix}
\sqrt{1-\rho^2} & 0 & 0 & 0 \\
-\rho & 1 & 0 & 0 \\
0 & -\rho & 1 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 1 \\
\end{bmatrix}
$$

$$
P = \begin{bmatrix}
\sqrt{1-\rho^2} & 0 & 0 & 0 \\
-\rho & 1 & 0 & 0 \\
0 & -\rho & 1 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 1 \\
\end{bmatrix}
$$
The SHAZAM commands for the GLS estimation are:

```shazam
* Set-up the P matrix
dim p 17 2
sample 2 17
genr p:1=1
genl p:1=sqrt(1-.8*.8)
sample 1 17
genr p:2=-.8

* Print the P matrix so that it can be checked.
print p

* Get the GLS estimator
gls consume income price / pmatrix=p

* Now verify the results with the AUTO command
auto consume income price / rho=.8
```

The `DIM` command is used to dimension the matrix P to be the size of the `PMATRIX` for the problem. (The `DIM` command is explained in the chapter `MISCELLANEOUS COMMANDS AND INFORMATION`.) Next, the `GENR` command is used to assign a value of 1 to observations 2 to 17 of the first column of the matrix P. Note that on the `GENR` command the first column of P is referred to as $P:1$. The first observation of this column is given a value of $\sqrt{1 - 0.8 \cdot 0.8}$. Finally, the second column is assigned a value of -0.8.

The SHAZAM results from the GLS estimation follow.

```
|* Set-up the P matrix
|DIM P 17 2
|SAMPLE 2 17
|GENR P:1=1
|GEN1 P:1=SQRT(1-.8*.8)
|SAMPLE 1 17
|GENR P:2=-.8
|* Print the P matrix so that it can be checked.
|PRINT P
 | 17 BY 2 MATRIX
 | .6000000  -.8000000
 | 1.000000  -.8000000
 | 1.000000  -.8000000
 | 1.000000  -.8000000
 | 1.000000  -.8000000
 | 1.000000  -.8000000
 | 1.000000  -.8000000
 | 1.000000  -.8000000
 | etc
```
<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-Ratio</th>
<th>14 DF</th>
<th>p-Value</th>
<th>Corr. Coefficient</th>
<th>At Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>1.1240</td>
<td>.5595</td>
<td>2.009</td>
<td>.064</td>
<td>.473</td>
<td>.2527</td>
<td>.8606</td>
</tr>
<tr>
<td>Price</td>
<td>-1.6577</td>
<td>.2525</td>
<td>-6.565</td>
<td>.000</td>
<td>-.869</td>
<td>-1.1859</td>
<td>-.9405</td>
</tr>
<tr>
<td>Constant</td>
<td>148.12</td>
<td>59.60</td>
<td>2.485</td>
<td>.026</td>
<td>.553</td>
<td>.0000</td>
<td>1.1012</td>
</tr>
</tbody>
</table>

GLS CONSUME INCOME PRICE / PMATRIX=P
...WARNING..ASSUMING P CONTAINS DIAGONALS

GLS ESTIMATION
17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO 1, 17

R-SQUARE DEFINITIONS BASED ON BUSE, AMSTAT(1973)
R-SQUARE = .7652 R-SQUARE ADJUSTED = .7316
VARIANCE OF THE ESTIMATE-SIGMA**2 = 48.091
STANDARD ERROR OF THE ESTIMATE-SIGMA = 6.9348
SUM OF SQUARED ERRORS-SSE= 673.27
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -55.9037
20. HETEROSEDASTIC MODELS

"The 'state of the world' is a serially correlated thing; hence, we find ARCH."
Francis Diebold and Marc Nerlove, 1989
Journal of Applied Econometrics

The HET command implements maximum likelihood estimation of models which require corrections for heteroskedastic errors. The model to consider is:

\[Y_t = X_t' \beta + \epsilon_t \]

where \(Y_t \) is the dependent variable, \(X_t \) are the independent variables, \(\beta \) are unknown parameters and \(\epsilon_t \) is a zero mean, serially uncorrelated process with variance given by the function \(h_t \). A survey of approaches to the specification of \(h_t \) is available in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 11].

Forms of Heteroskedasticity

A form that has been applied to cross-section studies of household expenditure (for example, Prais and Houthakker [1955] and Theil [1971]) is "dependent variable heteroskedasticity" with

\[h_t = (X_t' \beta)^2 \alpha^2 \]

where \(\alpha \) is a scalar parameter. Further flexibility is obtained with a variance specification that is a function of exogenous variables, say \(Z_t \), as in

\[h_t = Z_t' \alpha \quad \text{or} \quad h_t = (Z_t' \alpha)^2 \]

where \(\alpha \) is a vector of unknown parameters. Another form is the "multiplicative heteroskedasticity" model described by Harvey [1976, 1990] with

\[h_t = \exp (Z_t' \alpha) \]
ARCH Models

When modelling heteroskedasticity in time series data the ARCH (autoregressive conditional heteroskedasticity) process developed by Engle [1982] is of interest. ARCH models recognize the presence of successive periods of relative volatility and stability and allow the conditional variance to evolve over time as a function of past errors. The variance conditional on the past is given by the equation:

\[h_t = \alpha_0 + \sum_{j=1}^{q} \alpha_j \epsilon_{t-j}^2 + \sum_{j=1}^{p} \phi_j h_{t-j} \]

where the \(\alpha_j \) are unknown parameters and \(q \) is the order of the ARCH process.

Various extensions to the Engle ARCH model have been proposed in the literature. For example, ARMA models with ARCH errors are analyzed by Weiss [1984]. Bollerslev [1986] specifies a conditional variance equation, GARCH, that allows for a parsimonious parameterisation of the lag structure. Time varying risk premia can be considered by including some function of the conditional variance as an additional regressor in the mean equation. This gives the ARCH-M (ARCH-in-Mean) model discussed by Engle, Lilien and Robins [1987]. To incorporate these extensions consider the model:

\[Y_t = X_t' \beta + \gamma g(h_t) + \epsilon_t + \sum_{j=1}^{r} \theta_j \epsilon_{t-j} \]

where the \(\epsilon_t \) is a GARCH(p,q) process with conditional variance function given by:

\[h_t = \alpha_0 + \sum_{j=1}^{q} \alpha_j \epsilon_{t-j}^2 + \sum_{j=1}^{p} \phi_j h_{t-j} \]

and the unknown parameters are \(\beta, \gamma, \theta, \alpha, \) and \(\phi \). The function \(g(h_t) \) in the ARCH-M model may be specified by the practitioner and possible choices are \(\log(h_t) \) or \(\sqrt{h_t} \). ARCH processes assume constant unconditional variance and the parameter restrictions for stationarity are:

\[\alpha_0 > 0, \quad \alpha_j \geq 0 \quad \text{for all} \ j, \quad \phi_j \geq 0 \quad \text{for all} \ j, \quad \text{and} \quad \sum_{j=1}^{q} \alpha_j + \sum_{j=1}^{p} \phi_j < 1 \]
Also, the ARCH variance equation can be extended to include exogenous variables.

Maximum Likelihood Estimation

Maximum likelihood estimates are obtained based on the assumption that the errors are conditionally Gaussian. With the assumption of normality the log-density for observation t is:

$$l_t = -\frac{1}{2} \log(2\pi) - \frac{1}{2} \log(\epsilon_t) - \frac{1}{2} \frac{\epsilon_t^2}{h_t} \quad \text{for} \quad t = 1, \ldots, N$$

The log-likelihood function is:

$$L = \sum_{t=1}^{N} l_t$$

First derivatives of the log-likelihood function with respect to the mean equation parameters and the variance equation parameters can be derived and these are utilized by SHAZAM (with the exception of ARCH-in-Mean models where numerical derivatives are used). The nonlinear optimization method employed by SHAZAM is a quasi-Newton method and alternative algorithms can be selected with the METHOD= option as described for the NL command in the chapter NONLINEAR REGRESSION. For the HET command the optimization algorithm constructs an initial Hessian estimate from the outer-product of the gradient (with the exception of ARCH-in-Mean models where the model estimation uses numerical derivatives).

At model convergence there are a number of ways to compute an estimate of the variance-covariance matrix of the parameter estimates. The HET command computes the information matrix inverse (with the exception of ARCH-in-Mean models where the covariance matrix estimate is computed from a Hessian approximation). For ARCH models and the exogenous heteroskedasticity models the information matrix is block diagonal. For the dependent variable heteroskedasticity model the assumption of Gaussian errors leads to an information matrix that is not block diagonal. Analytic expressions for the information matrix are available in Harvey [1990, Chapter 3.4] (for the dependent variable heteroskedasticity and the multiplicative heteroskedasticity models), Engle [1982] (for ARCH models) and Bollerslev [1986] (for GARCH models). Alternative covariance matrix estimates are obtained by using the NUMCOV, or OPGCOV options as described for the NL command in the chapter NONLINEAR REGRESSION.
HET COMMAND OPTIONS

In general, the format of the HET command is:

HET depvar indeps (exogs) / options

where *depvar* is the dependent variable, *indeps* is a list of independent variables, *exogs* is an optional list of exogenous variables in the variance equation and *options* is a list of desired options. For models with exogenous heteroskedasticity an intercept term is always included in the variance equation and therefore should not be specified in the *exogs* variable list. For models with exogenous variables in the variance equation if the *exogs* option is not specified then SHAZAM will set the variance equation exogenous variables to be identical to the regression equation exogenous variables. However, users should be warned that this may not be the best choice. For example, it may be appropriate to consider some transformation of the regression variables in the variance equation.

The options as defined for OLS that are available are:

DUMP, LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX, NOCONSTANT, PCOR, PCOV, RSTAT, BEG=/END=, COEF=, COV=, PREDICT=, RESID=, STDERR= and **TRATIO=**.

The options as defined for the nonlinear regression command NL that are available are:

NUMCOV, NUMERIC, OPGCOV, CONV=, ITER=, METHOD=, PITER= and **STEPSIZE=**.

The following additional options are available on the HET command:

PRESAMP

The estimation of ARCH models requires pre-sample estimates of \(\varepsilon_t^2 \). The algorithm sets the pre-sample values as an additional parameter and then obtains an estimated value that maximizes the value of the likelihood function. Use the **PRESAMP** option to ensure that an initial value is fixed for the pre-sample data in all iterations. If this option is specified then the pre-sample values are set to the average of the squared errors evaluated at the starting parameter values or the square of the value specified in the **START=** option.

ARCH=

Specifies the order q of the ARCH process.
ARCHM= Specifies the functional form for the ARCH-in-Mean term. With ARCHM=x the term h_t^x is included as an additional regressor. Set ARCHM=0 for $\log(h_t)$ in the ARCH-M model. Set ARCHM=0.5 for $\sqrt{h_t}$ in the ARCH-M model. When this option is used the model estimation uses numerical derivatives. The estimation algorithm provides a Hessian approximation that is used to compute the covariance matrix estimate. This may give unreliable standard errors. Therefore, the NUMCOV option (as described for the NL command) should also be considered with the ARCHM= option.

GARCH= Specifies the order p of the lagged conditional variances in the GARCH process. If the ARCH= option is not set then the process estimated is GARCH(p,1). In applied work the GARCH process that is often considered practical is the GARCH(1,1) process. This is obtained by specifying GARCH=1.

GMATRIX= Specifies an NxK matrix to use to store the derivatives of the log-likelihood function at each observation. This option is not available with the NUMERIC option. An example of the use of this option is given at the end of this chapter.

MACH= Specifies the order of the moving average process in models with ARCH errors.

MODEL= Specifies the form of heteroskedasticity. The available options are:
ARCH for ARCH models. When this option is requested the default for the ARCH order is ARCH=1.
DEPVAR for DEPendent VARiable heteroskedasticity.
MULT for MULTiplicative heteroskedasticity.
STDLIN for $h_t = (Z_t\alpha)^2$ (i.e. the STandard Deviation is a LINear function of exogenous variables).
VARLIN for $h_t = Z_t\alpha$ (i.e. the VARiance is a LINear function of exogenous variables).
If the ARCH=, ARCHM=, GARCH= or MACH= options are requested then MODEL=ARCH is assumed. Otherwise, the default is MODEL=DEPVAR.

START= Specifies a vector of starting values for the estimation. The values must be in the same order as on the SHAZAM output. In addition, for ARCH
models, the final parameter may be the starting value for the standard deviation of the pre-sample innovations. If this option is not specified then the starting parameter values are chosen by default. The default starting estimate for β are obtained from an OLS regression. For ARCH models the default starting values for the α are obtained from a regression of the OLS squared residuals on a constant and q lags.

STDRESID= Saves the standardized residuals in the variable specified. The standardized residuals are computed from the estimated parameters as $\hat{\epsilon}_t / \sqrt{h_t}$.

Following model estimation the available temporary variables as described for the OLS command are:

\texttt{ERR}, \texttt{K}, \texttt{LLF}, \texttt{N}, and $\texttt{R2OP}$.

A practical difficulty with MODEL=VARLIN is that the parameter values may wander into regions that give negative variance. If this is encountered the algorithm resets the negative variance to a small positive number. The ARCH models may also generate negative variance and overflows and the algorithm checks for this. Warning messages for negative variance corrections are given when the DUMP option is used. If the model does not converge then different starting values can be tried with the START= option.

For ARCH models, when the estimation results are displayed the variable name GAMMA_ gives the ARCH-in-Mean parameter, the variable names THETA_ give the moving average parameters, the variable names ALPHA_ give the ARCH parameters (the first is the constant term in the variance equation), and the PHI_ give the parameter estimates on the lagged variances in the GARCH conditional variance equation. Finally the variable name DELTA_ gives the estimate of the standard deviation of the pre-sample innovations.

EXAMPLES

Testing for Heteroskedasticity

To test for heteroskedasticity an approach is to first run an OLS regression and then apply Lagrange multiplier tests. The DIAGNOS / HET command reports a number of useful tests including a test for ARCH(1) errors. A test for ARCH(q) can be constructed by running a regression of the OLS squared residuals on a constant and q lags and comparing the N-R^2 value with a χ^2 distribution with q degrees of freedom. The following SHAZAM commands generate tests for heteroskedasticity and ARCH(2) errors.
\texttt{ols} consume income price / \texttt{resid=e}
\texttt{diagnos / het}
\texttt{genr e2=e**2}
\texttt{ols e2 e2(1.2)}
\texttt{genl lm=$n*$r2}
\texttt{print lm}

By examining the test statistics the user can verify that the null hypothesis of homoskedasticity is not rejected for this simple example. However, the examples that follow serve to illustrate the \texttt{HET} command.

\textit{Dependent Variable Heteroskedasticity}

The estimation results for a model with "dependent variable heteroskedasticity" are given below:

\begin{verbatim}
 _HET CONSUME INCOME PRICE
 ...NOTE..SAMPLE RANGE SET TO: 1, 17
 DEPVAR HETEROSKEDASTICITY MODEL 17 OBSERVATIONS
 ANALYTIC DERIVATIVES
 QUASI-NEWTON METHOD USING BFGS UPDATE FORMULA
 INITIAL STATISTICS :
 TIME = 1.750 SEC. ITER. NO. 1 FUNCTION EVALUATIONS 1
 LOG-LIKELIHOOD FUNCTION= -51.00134
 COEFFICIENTS
 1.061709 -1.382986 130.7066 .3700365E-01
 GRADIENT
 -13.82284 -21.68072 -.167465 7.936759
 FINAL STATISTICS :
 TIME = 1.970 SEC. ITER. NO. 6 FUNCTION EVALUATIONS 6
 LOG-LIKELIHOOD FUNCTION= -50.58788
 COEFFICIENTS
 .9084240 -1.351451 144.0436 .3580546E-01
 GRADIENT
 .6045146E-01 .6405245E-01 .5909730E-03 .5394427
 SQUARED CORR. COEF. BETWEEN OBSERVED AND PREDICTED .95040
 ASY. COVARIANCE MATRIX OF PARAMETER ESTIMATES IS ESTIMATED USING
 THE INFORMATION MATRIX
 LOG OF THE LIKELIHOOD FUNCTION = -50.5879

 ASYMPOTIC
 VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
 NAME COEFFICIENT ERROR ***** DF P-VALUE CORR. COEFFICIENT AT MEANS
 MEAN EQUATION:
 INCOME .90842 .2140 4.246 .000 .762 .2042 .6955
 PRICE -1.3515 .6706E-01 -20.15 .000 -9.84 -9.668 -7.667
 CONSTANT 144.04 22.78 6.324 .000 .869 .0000 1.0709
\end{verbatim}
The coefficient α_1 above can be interpreted as the estimate of the standard deviation of the ratio $\varepsilon_t/(X_t\beta)$.

ARCH(1)

Output for the estimation of a first-order ARCH model is:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
<th>MEAN EQUATION:</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
<th>AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>.94322</td>
<td>.2019</td>
<td>4.672</td>
<td>.000</td>
<td></td>
<td>.000</td>
<td>4.672</td>
</tr>
<tr>
<td>PRICE</td>
<td>-.14092</td>
<td>.6708E-01</td>
<td>-21.01</td>
<td>.000</td>
<td>-.988</td>
<td>-1.0081</td>
<td>-.988</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>145.00</td>
<td>20.63</td>
<td>7.029</td>
<td>.000</td>
<td></td>
<td>.000</td>
<td>7.029</td>
</tr>
<tr>
<td>α_1</td>
<td>15.231</td>
<td>9.221</td>
<td>1.652</td>
<td>.099</td>
<td></td>
<td>.44</td>
<td></td>
</tr>
<tr>
<td>α_2</td>
<td>.48102</td>
<td>.5340</td>
<td>.9007</td>
<td>.368</td>
<td></td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td>δ_1</td>
<td>5.2033</td>
<td>8.321</td>
<td>.6253</td>
<td>.532</td>
<td></td>
<td>.18</td>
<td></td>
</tr>
</tbody>
</table>
The starting values listed in iteration 1 are obtained from OLS and the model converges in 8 iterations. Note that the estimated value for α_1 is 0.48102 which satisfies the stationarity constraints (although it is not statistically significant). The coefficient DELTA_i is the estimate of the standard deviation of the pre-sample innovations. If the PRESAMP option is used then the pre-sample values are fixed. More model estimation output is obtained with the DUMP and $\text{PITER}=1$ options.

Multiplicative Heteroskedasticity

Consider the model: \[Y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + \epsilon_t \]

with an error variance function:

\[h_t = \alpha_1 X_{2t}^\alpha_2 X_{3t}^\alpha_3 = \exp \left\{ \log(\alpha_1) + \alpha_2 \log(X_{2t}) + \alpha_3 \log(X_{3t}) \right\} \]

This can be viewed as a "multiplicative heteroskedasticity" model. An example of SHAZAM commands for estimation of the model parameters is:

```
genr linc=log(income)
genr lprice=log(price)
het consume income price (linc lprice) / model=mult
```

Robust Standard Errors

Some applied workers report robust standard errors obtained from the covariance matrix calculation $A^{-1}BA^{-1}$ where A is the information matrix and B is the outer-product of the gradient (see White [1982], Weiss [1986] and Bollerslev [1986]). The standard errors are robust in the sense that conditional normality of the errors is not assumed. The next set of SHAZAM commands estimates a GARCH(1,1) model and computes robust standard errors. Starting values for the estimation are specified in the variable INPUT.

```
read(filename) y x1 x2
dim input 6

* Starting values for the mean equation
gen1 input:1=1
gen1 input:2=1
gen1 input:3=100

* Starting values for the GARCH(1,1) variance equation
gen1 input:4=.5
gen1 input:5=.2
```


* Estimate a GARCH(1,1) model
het y x1 x2 / start=input arch=1 garch=1 coef=beta cov=ainv &
gmatrix=g

* Compute robust standard errors
matrix v=ainv*(g'g)*ainv
matrix se=sqrt(diag(v))
matrix t=beta/se

* Print parameter estimates with robust standard errors and t-ratios.
print beta se t
In regression applications where the dependent variable is strictly positive the assumption of normally distributed errors may be inappropriate. The MLE command provides maximum likelihood estimation of linear regression models for a range of distributional assumptions. If regressions with multivariate-t errors are desired see the chapter in this manual titled ROBUST ESTIMATION. If the desired form of the model is not listed with the TYPE= option described below see the LOGDEN option in the chapter NONLINEAR REGRESSION where a user-specified density function may be estimated. This command should only be used if this type of regression model is fully understood. The derivations in this chapter were derived by Trudy Cameron. For a further description of these models see Cameron and White [1990].

Consider the class of linear regression models such that: \(\mathbb{E}(Y_t | X_t) = X_t' \beta \)

Assume \(Y_t \) are independent random variables from a distribution with probability density function \(f(Y_t; X_t, \beta, \theta) \) where \(\theta \) is a vector of parameters that describe the shape of the distribution. The log-likelihood function is obtained by summing the log densities over all observations:

\[
L = \sum_{t=1}^{N} \log \left\{ f(Y_t; X_t, \beta, \theta) \right\}
\]

The maximum likelihood estimates of \(\beta \) and \(\theta \) are found by a nonlinear algorithm as those that maximize the value of the log-likelihood function. The estimated covariance matrix of the coefficient estimates is found by computing the inverse of the matrix of second derivatives of the log-likelihood function and evaluating this matrix at the maximum likelihood estimates.
\textbf{Exponential Regression}

The exponential distribution is the default distribution for the \texttt{MLE} command and is used if the \texttt{TYPE=} option is not specified. The conditional density function for \(Y_t\) can be expressed as:

\[
f(Y_t; X_t, \beta) = \left(1 / X_t' \beta\right) \exp(-Y_t / X_t' \beta)
\]

Taking logs and summing over all \(N\) observations gives the log-likelihood function:

\[
- \sum_{t=1}^{N} \log(X_t' \beta) - \sum_{t=1}^{N} \left(\frac{Y_t}{X_t' \beta} \right)
\]

\textbf{Generalized Gamma Regression}

The generalized gamma distribution is a flexible distribution that contains the simple gamma, Weibull, exponential and lognormal distributions as special cases. The log-likelihood function for regression using the generalized gamma distribution is:

\[
N \log(c) - N \log \Gamma(k) + N \cdot c \cdot k \cdot \log \left(\frac{\Gamma(k + (1 / c))}{\Gamma(k)} \right) - \sum_{t=1}^{N} \log(Y_t) + c \cdot k \sum_{t=1}^{N} \log \left(\frac{Y_t}{X_t' \beta} \right) - \sum_{t=1}^{N} \left(\frac{\Gamma(k + (1 / c))}{\Gamma(k)} \right) \frac{Y_t}{X_t' \beta}^c
\]

where \(c\) and \(k\) are shape parameters. When \(c = k = 1\) the exponential distribution is obtained. When \(k = 1\) the generalized gamma distribution reduces to the Weibull distribution and when \(c = 1\) the generalized gamma distribution reduces to the gamma distribution.

\textbf{Model Discrimination}

Since the exponential distribution is a special case of the gamma distribution and also of the Weibull distribution it is easy to compute Lagrange Multiplier (LM) statistics for testing the hypothesis of exponential versus the more general distributions. These test statistics are reported with the \texttt{LM} option on the \texttt{MLE} command. A LM statistic to test the exponential model against the gamma model is computed as:

\[
LM = g' H^{-1} g
\]
where \(g \) and \(H \) are the first (gradient) and second (Hessian) derivatives respectively of the gamma log-likelihood function evaluated at the point \(k = 1 \). Under the null hypothesis that the exponential distribution is correct this statistic has an asymptotic chi-square distribution with 1 degree of freedom. A similar procedure is used to test the exponential model against the Weibull model.

An LM test of the Weibull or gamma model against the generalized gamma model can also be constructed. For nested models a likelihood ratio test statistic provides another basis for comparison (see the discussion in McDonald [1984] and Cameron and White [1990]). Wald test statistics (computed with the \texttt{TEST} command) can also be applied to aid in model selection.

\textit{Lognormal Regression}

It can be shown (with difficulty) that the lognormal distribution becomes a special case of the generalized gamma distribution as the parameter \(k \) approaches infinity. For regression using the lognormal distribution the log-likelihood function is:

\[
- N \log(\sqrt{2\pi\sigma}) - \sum_{t=1}^{N} \log(Y_t) - \frac{1}{2\sigma^2} \sum_{t=1}^{N} \left[\log\left(\frac{Y_t}{X_t^\beta}\right) + \frac{\sigma^2}{2} \right]^2
\]

\textit{Beta Regression}

The beta distribution can be used for modeling dependent variables that are proportions. The beta density function has two parameters: \(p \) and \(q \) and the mean of a beta distribution is equal to \(p/(p+q) \). One way to derive the model is to make one of the parameters a function of the independent variables. When the \texttt{TYPE=BETA} option is specified the beta regression model where the parameter \(q \) is conditional on \(X \) is:

\[
E(Y_t | X_t) = X_t^\beta = \frac{p}{p + q(X_t)} \quad \text{where} \quad q(X_t) = \frac{p}{X_t^\beta} - p
\]

The conditional beta density function becomes:

\[
f(Y_t; X_t, \beta, p) = Y_t^{(p-1)}(1 - Y_t)^{(q(X_t)-1)} \left/ \left\{ \frac{\Gamma(p)\Gamma(q(X_t))}{\Gamma(p + q(X_t))} \right\} \right.
\]

The beta regression log-likelihood function is:
When the \texttt{TYPE=EBETA} option is specified the model assumptions are:

\[p(X_t) = \exp(X_t' \alpha) \quad \text{and} \quad q(X_t) = \exp(X_t' \gamma) \]

This model is given in Paolino [2001, p. 327]. The parameters \(\alpha \) and \(\gamma \) are estimated by maximizing the log-likelihood function. An alternative approach to beta estimation is proposed in Paolino [2001, p. 336] and implemented with the \texttt{TYPE=MBETA} option. The specification is:

\[
E(Y_t \mid X_t) = \frac{\exp(X_t' \alpha)}{1 + \exp(X_t' \alpha)}
\]

The variance of the dependent variable depends on the function: \(\exp(Z_t' \gamma) \)

The \(X \) and \(Z \) are (potentially distinct) independent variables and the parameters \(\alpha \) and \(\gamma \) give the effects of \(X \) and \(Z \) on the expected value and dispersion of the dependent variable.

\textit{Log-linear Models}

An alternative model assumption is: \(E(\log(Y_t) \mid X_t) = X_t' \beta \)

This form is obtained when \texttt{TYPE=EGAMMA, EGG, EWEIBULL} or \texttt{EXTREMEV} is specified on the \texttt{MLE} command. The dependent variable must first be transformed to log form. Define \(Z_t = \log(Y_t) \). For the log-linear generalized gamma regression model (\texttt{TYPE=EGG}) the conditional density function for the logarithmically transformed variable \(Z_t \) is:

\[
f(Z_t; X_t, \beta, \sigma, k) = \frac{1}{\sigma \Gamma(k)} \exp \left[k \frac{(Z_t - X_t' \beta)}{\sigma} - \exp \left(\frac{(Z_t - X_t' \beta)}{\sigma} \right) \right]
\]

where \(\sigma = 1/c \). The log-likelihood function (see Cameron and White [1990, Equation 9]) can then be written as:

\[
- N \log(\sigma) - N \log \Gamma(k) + k \sum_{t=1}^{N} \frac{(Z_t - X_t' \beta)}{\sigma} - \sum_{t=1}^{N} \exp \left(\frac{(Z_t - X_t' \beta)}{\sigma} \right)
\]
The shape parameters reported on the SHAZAM output are σ and k. Note that for comparison purposes with the linear model the value of the log-likelihood function computed for the log-linear model must be adjusted to include the appropriate Jacobian transformation. This is implemented with the `LOGLIN` option as described for the `OLS` command. Also note that the log-linear lognormal model is simply OLS with $\log(Y_t)$ as the dependent variable.

Poisson Regression

Poisson regression can be applied for models where the dependent variable has integer values such as count data. This can be implemented with the `TYPE=EPOISSON` or `POISSON` options on the `MLE` command. With `TYPE=EPOISSON` the probability function is:

$$ \Pr(Y_t) = \exp(-\lambda_t) \frac{\lambda_t^Y}{Y!} \quad \text{for} \quad Y_t = 0, 1, 2, \ldots \quad \text{and} \quad \lambda_t = \exp(X_t' \beta) $$

The conditional mean is: $E(Y_t | X_t) = \lambda_t$

The Poisson regression log-likelihood function is:

$$ \sum_{t=1}^{N} \left[- \exp(X_t' \beta) + Y_t X_t' \beta - \log(Y_t!) \right] $$

Goodness of fit measures are discussed in Greene [2003, Chapter 21, pp. 741-2]. SHAZAM reports two alternative R^2 measures for the Poisson regression model. Another fit measure is the sum of the deviances defined as:

$$ G^2 = 2 \sum_{t=1}^{N} Y_t \log \left(Y_t / \exp(X_t' \hat{\beta}) \right) $$

This is reported as the `POISSON G-SQUARE` on the SHAZAM output. For this statistic, a relatively smaller value indicates a better fit.

The `TYPE=POISSON` option on the `MLE` command gives a linear version where

$$ E(Y_t | X_t) = \lambda_t = X_t' \beta $$

In this case, the log-likelihood function is:
Note that this is not defined for values of $X_t' \beta < 0$. For this reason, the model used by \texttt{TYPE=EPOISSON} may be preferred to \texttt{POISSON}.

MLE COMMAND OPTIONS

In general, the format of the MLE command is:

\[
\text{MLE} \ depvar \ indeps / \ options
\]

where \texttt{depvar} is the dependent variable, \texttt{indeps} is a list of independent variables, and \texttt{options} is a list of desired options. It is possible to specify the distribution of the errors when using the MLE command with the \texttt{TYPE=} option. When \texttt{TYPE=MBETA} is used the command format is:

\[
\text{MLE} \ depvar \ indeps (indeps2) / \texttt{TYPE=MBETA NUMERIC} \ options
\]

where \texttt{indeps2} is a list of independent variables for the variance function.

Options as described for the \texttt{OLS} command that are available are:

\begin{itemize}
 \item \texttt{ANOVA}, \texttt{DUMP}, \texttt{GF}, \texttt{LININV}, \texttt{LINLOG}, \texttt{LIST}, \texttt{LOGINV}, \texttt{LOGLIN}, \texttt{LOGLOG}, \texttt{MAX}, \texttt{NOCONSTANT}, \texttt{NONORM}, \texttt{PCOR}, \texttt{PCOV}, \texttt{RSTAT}, \texttt{BEG=}, \texttt{END=}, \texttt{COEF=}, \texttt{COV=}, \texttt{PREDICT=}, \texttt{RESID=}, \texttt{STDERR=}, \texttt{TRATIO=} and \texttt{WEIGHT=}.
\end{itemize}

When the \texttt{WEIGHT=} option is specified the method explained under the \texttt{REPLICATE} option in \texttt{OLS} is used.

Options as described for the \texttt{NL} command (see the chapter \texttt{NONLINEAR REGRESSION}) that are available are:

\begin{itemize}
 \item \texttt{NUMERIC}, \texttt{CONV=} \texttt{IN=} \texttt{ITER=} \texttt{OUT=} and \texttt{PITER=}.
\end{itemize}

In addition, the following options are available:
Perform a Lagrange Multiplier test of some models against a less restricted model. If \texttt{TYPE=EXP} is used, two \texttt{LM} Tests for the \texttt{GAMMA} or \texttt{WEIBULL} models will be done. If \texttt{TYPE=WEIBULL} or \texttt{TYPE=GAMMA} is used the \texttt{LM} test of a Generalized Gamma distribution is performed.

\textbf{METHOD=} Specifies the nonlinear algorithm to use. The choices are \texttt{BFGS} (the default) or \texttt{DFP}. These \texttt{METHODs} are described in the chapter \textit{NONLINEAR REGRESSION}.

\textbf{TYPE=} Specifies the \texttt{TYPE} of distribution to be assumed for the errors. The available \texttt{TYPEs} are \texttt{WEIBULL}, \texttt{EWEIBULL}, \texttt{GAMMA}, \texttt{EGAMMA}, \texttt{GG} (Generalized Gamma), \texttt{EGG}, \texttt{LOGNORM} (Lognormal), \texttt{BETA}, \texttt{EBETA}, \texttt{EXP} (Exponential), \texttt{EXTREMEV} (Extreme Value Distribution), \texttt{MBETA}, \texttt{POISSON} and \texttt{EPOISSON}. The default is \texttt{TYPE=EXP}. The types \texttt{EWEIBULL}, \texttt{EGAMMA}, \texttt{EGG} and \texttt{EXTREMEV} are used when the dependent variable is in log form. They correspond to the \texttt{WEIBULL}, \texttt{GAMMA}, \texttt{GG}, and \texttt{EXP} forms respectively.

The available temporary variables on the \texttt{MLE} command are:

\texttt{$ADR2, \ DF, \ DW, \ ERR, \ K, \ LLF, \ N, \ R2, \ R2OP, \ RAW, \ RHO, \ SIG2, \ SSE, \ SSR, \ SST, \ ZDF, \ ZSSR} \text{ and } \texttt{ZSST}.

For more information on temporary variables see the chapter \textit{MISCELLANEOUS COMMANDS AND INFORMATION} and the chapter \textit{ORDINARY LEAST SQUARES}.

\begin{Verbatim}
EXAMPLES
\end{Verbatim}

An example of \texttt{MLE} output using Theil's textile data and assuming an exponential distribution is:

\begin{verbatim}
| MLE CONSUME INCOME PRICE / LM EXP REGRESSION 17 OBSERVATIONS SUM OF DEPVAR= 2286.6 SUM OF LOG DEPVAR= 83.069 QUASI-NEWTON METHOD USING BFGS UPDATE FORMULA INITIAL STATISTICS :
TIME = .440 SEC. ITER. NO. 1 FUNCTION EVALUATIONS 1 LOG-LIKELIHOOD FUNCTION= -100.0802
\end{verbatim}
Note that if one simply wished to estimate the parameters of a univariate distribution rather than a full regression model it could be easily done by excluding all independent variables so that only the CONSTANT would be estimated as in:

```
mle consume / lm
```
22. NONLINEAR REGRESSION

"It may be safely asserted...that population, when unchecked, increases in geometrical progression of such a nature to double itself every twenty-five years."

Thomas Malthus
British Economist, 1830

The **NL** command provides general features for the estimation of nonlinear models. The model specification can be a single equation or a system of equations and estimation with autoregressive errors is available. A system of nonlinear simultaneous equations can also be estimated by Nonlinear Three Stage Least Squares (N3SLS) or by Generalized Method of Moments (GMM).

The **NL** command also has options for the estimation of a general nonlinear function. For example, the **LOGDEN** option can be used for estimation with non-normal errors (also see the chapter *MAXIMUM LIKELIHOOD ESTIMATION OF NON-NORMAL MODELS*). The **MINFUNC** and **MAXFUNC** options can be used to minimize or maximize simple functions and the **SOLVE** option can be used to solve a set of nonlinear simultaneous equations.

The estimation of nonlinear models requires the use of a numerical optimization algorithm. SHAZAM uses a quasi-Newton method also known as a variable metric method (see Judge et al. [1985, pp.958-960]). Each updating step of the algorithm requires a gradient (first derivative) estimate and SHAZAM provides for exact evaluation of the gradient. If exact derivatives cannot be computed then SHAZAM will use a numerical approximation to obtain the gradient and a message will indicate that numerical derivatives are used. Each updating step also requires an approximation of the Hessian (second derivatives). The quasi-Newton family of algorithms obtains a Hessian inverse approximation in each iteration by an updating scheme that involves adding a correction matrix. At model convergence this approximation is then used as the covariance matrix estimate of the estimated parameters.

NOTE: Users should be familiar with nonlinear estimation before attempting this procedure. The *Nonlinear Least Squares by the Rank One Correction Method* example in the *PROGRAMMING IN SHAZAM* chapter shows a simple updating algorithm. Some basic information can be found in Maddala [1977]. A more rigorous treatment of nonlinear estimation can be found in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 6, Appendix B]; Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 12]; and in Amemiya
[1983] and Gallant [1987]. A procedure for testing for autocorrelation in nonlinear models is described in White [1992].

Users experienced with nonlinear estimation will be aware that there is no guarantee that the model will converge. If it does, convergence to a local rather than a global maximum is likely. For this reason, the model should always be re-estimated with different starting values to verify that the global maximum has probably been achieved. Since the computational time required for nonlinear estimation can be extremely high it is often useful to attempt to get good starting values by first estimating a linear simplification of the model.

Simulated Annealing

In addition to the traditional gradient methods offered by NL the SHAZAM also offers simulated annealing as a method to find global minima for nonlinear regression problems. This approach to regression is a type of Monte-Carlo method, which can be useful for finding solutions to problems where more traditional methods fail to find global minima. Simulated annealing can be used in SHAZAM as a standalone method and also as a starting point finder as hybrid approach to get a ‘reasonable’ set of starting conditions for the more traditional gradient methods.

Simulated annealing was originally developed by analogy to the physical process of annealing, whereby a heated piece of metal can have very different physical properties depending on the rate of cooling. As such a key variable involved in simulated annealing algorithm is the temperature variable. A difficulty with some simulated annealing algorithms is estimating a good starting temperature. SHAZAM automatically estimate the starting temperature using the approach outline by Goffe et al [1994].

There are a number of benefits to using simulated annealing for certain classes of problem, which the traditional methods can struggle to find appropriate solutions. That said, the approach is by no means a panacea. Like any optimization routine it is not guaranteed to find a global convergent solution to a given problem. Moreover, even for problems where a solution is found, the method can be significantly more computationally expensive, than a traditional gradient method approach.

As with other forms of the nonlinear optimization, users should be familiar with simulated annealing before attempting this procedure, Goffe et al [1994] give an extensive investigation of the algorithm implemented in SHAZAM.
To set up a nonlinear model in SHAZAM, it is necessary to tell SHAZAM some basic information as well as give EQ commands indicating the form of each equation in the model. It is very important for users to give SHAZAM good starting values of the coefficients. The desired starting values should be specified on COEF commands or placed in a vector and specified with the START= option on the NL command.

In general, the format for nonlinear estimation is:

\[
\text{NL neq / NCOEF= options} \\
\text{EQ equation} \\
\text{. . .} \\
\text{EQ equation} \\
\text{COEF coef1 value1 coef2 value2 . . .} \\
\text{END}
\]

where \(\text{neq} \) is the number of equations and \(\text{options} \) is a list of desired options.

For estimation by Nonlinear Two-Stage Least Squares (N2SLS) or Nonlinear Three-Stage Least Squares (N3SLS) the NL command has the general form:

\[
\text{NL neq exogs / NCOEF= options}
\]

where \(\text{exogs} \) is a list of instrumental variables. SHAZAM automatically includes a constant in the list of instrumental variables unless the NOCONEXOG option is used.

For generalized method of moments (GMM) estimation the NL command has the general form:

\[
\text{NL neq exogs / NCOEF= GMM= options}
\]

One EQ command is required for every equation in the model. The EQ command can be continued on additional lines if there is an ampersand (&) typed at the end of the line to be continued. An equation with continuation lines may contain a total of 16,384 characters. EQ commands are similar to GENR commands. If functions like LOG() and EXP() are used then SHAZAM is able to compute exact derivatives. However, for some other
functions SHAZAM will automatically impose the **NUMERIC** option. If the equation has square root terms then to enable analytic derivatives write the terms in the form \((expression)^{**.5}\) and not \(\text{SQRT}(expression)\). SHAZAM will assume that anything in the equation that has not already been defined as a variable will be a coefficient to estimate. Coefficients that appear in one equation may also appear in other equations.

RESTRICT commands are not permitted. Parameter restrictions can be incorporated directly in the **EQ** command. No forecasting options are available. **TEST** commands may follow the **END** command. For a discussion about linear and non-linear hypothesis testing see the chapter **HYPOTHESIS TESTING**.

NL Command Options

Options as defined for the **OLS** command that are available are:

Additional options are:

- **ACROSS** Estimates the seemingly unrelated regressions model with vector autoregressive errors. This admits autocorrelation **ACROSS** equations as well as within a single equation. This option can be computationally slow. More details are in the section **ESTIMATION WITH AUTOREGRESSIVE ERRORS** later in this chapter.

- **AUTO** Estimates the model with **AUTO**regressive errors. The order is specified with the **ORDER=** option and the default is first order autoregressive (AR(1)) errors. More details are in the section **ESTIMATION WITH AUTOREGRESSIVE ERRORS** later in this chapter.

- **DN** Estimates the error variance \(\sigma^2\) by **Dividing** the residual sum of squares by **N** instead of **N–K**. This option is the default. Use **NODN** to divide by **N–K**.

- **DRHO** Normally, when the **AUTO** option is specified SHAZAM gives the same value of \(\rho\) to each equation. With the **DRHO** option a **Different** value of **RHO** is given to each equation. When the order of autocorrelation is specified as higher than one on the **ORDER=** option the **DRHO** option will also give more than one \(\rho\) for each equation.
DUMP

Dumps the internal code that SHAZAM has generated for the EQ commands. This option is only useful for SHAZAM consultants. If DUMP is specified with EVAL there will be a large amount of output.

EVAL

EVALuates the likelihood function for the starting values and prints out the answer. If ITER=0 is also specified no estimation will be done. This is useful for experimentation purposes. If EVAL and DUMP are specified all the data in the nonlinear system is dumped along with the computed residuals and derivatives of the function with respect to all parameters. First, the data for each observation will be printed. Then the residuals for each equation and the derivatives of each equation with respect to each parameter will be printed, and finally, the derivatives for the equations will be printed consecutively. This option may not be used with the NUMERIC option.

GENRVAR

Takes the vector of coefficients and generates a set of scalar variables using the same names as those used for the coefficients on the EQ command. These scalar variables can then be used for the rest of the SHAZAM run. This is an alternative to the COEF= method for saving the coefficients.

NOTE: A large number of variables may need to be generated if the model is large. The coefficient names used may not be used on any EQ command later in the same run. Since the coefficients are now variables TEST commands will no longer work.

LOGDEN

Used to tell SHAZAM that the equation given on the EQ command is the LOG-DENSITY for a single observation rather than a regression equation. SHAZAM will then compute a complete likelihood function by summing the log-densities. This option allows maximum likelihood estimation of a large variety of functions. An example (available at the SHAZAM website) is in Chapter 12.3 of the Judge Handbook. Another example is in Multinomial Logit Models in the chapter PROGRAMMING IN SHAZAM. With the LOGDEN option, the RESID= option saves the log-densities evaluated at the final parameter estimates in the variable specified.

MAXFUNC

Used to tell SHAZAM that the equation given on the EQ command is a function (such as a log-likelihood function) to be maximized rather than a regression equation. SHAZAM will find the values of the parameters that maximize the function. The SAMPLE command should be set to
include only one observation. An example of the use of this option is
given later in this chapter.

MINFUNC
Used to tell SHAZAM that the equation given on the **EQ** command is a
function to be minimized rather than a regression equation. SHAZAM
will then find the values of the parameters that minimize the function.
The **SAMPLE** command should be set to include only one observation.

NOCONEXOG
If a list of exogenous variables is included for either Nonlinear Two or
Three Stage Least Squares SHAZAM will automatically add a
CONSTANT to the list. If you do not want SHAZAM to automatically
include a constant in the list of exogenous variables, specify the
NOCONEXOG option.

NOPSIGMA
Suppresses printing of the sigma matrix from systems estimation.

NUMCOV
Uses numeric differences to compute the covariance matrix after
estimation. If this option is NOT specified SHAZAM uses a method
based on the Davidon-Fletcher-Powell algorithm which builds up the
covariance matrix after many iterations. This method may not be accurate if the model only runs for a small number of iterations. The numeric method is more expensive and also may not necessarily be accurate. The differential to be used in numeric differences can be controlled with the **STEPSIZE** option.

NUMERIC
Uses the **NUMERIC** difference method to compute derivatives in the
algorithm. SHAZAM normally computes analytic derivatives which are
more accurate. However, in some models with many equations and parameters, considerable savings in required memory will result if the **NUMERIC** option is used to compute numeric derivatives. In some cases the **NUMERIC** option may even be faster. For large models SHAZAM may automatically switch to numeric derivatives. If this happens then analytic derivatives can be forced with the **NONUMERIC** option (this will not be effective if functions other than LOG() and EXP() are used in the model).

OPGCOV
Uses the outer-product of the Gradient method to compute the
covariance matrix. It is not valid with the **NUMERIC** option.
PCOV Prints an estimate of the COVariance matrix of coefficients after convergence. This estimate is based on an estimate of the Hessian which SHAZAM computes internally. SHAZAM estimates the Hessian by building it up after repeated iterations. Therefore, if the model converges immediately, SHAZAM will have a very poor estimate of the Hessian or none at all. In this case, the covariance matrix will just be an identity matrix. If the NUMCOV or OPGCOV options are used the estimated covariance matrix is computed using alternate methods.

SAME Runs the previous NL regression without repeating the EQ commands. This should only be used in TALK mode at a terminal.

SOLVE Used to tell SHAZAM that the equations given on the EQ commands are to be solved as a set of nonlinear simultaneous equations. There should be one equation for each coefficient as specified by the NCOEF= option. An example is shown in Solving Nonlinear Sets of Equations in the chapter PROGRAMMING IN SHAZAM. The SAMPLE should be set to include only one observation.

AUTCOV= Specifies the lag length to be used in computing the weighting matrix for the GMM= option. If this option is not specified automatic formulas are used.

CONV= Specifies the CONvergence criterion for the coefficients. This value will be multiplied by each coefficient starting value to compute the convergence condition for each coefficient. The default is CONV=.00001. Let $\hat{\beta}^{(i)}$ be the parameter estimates at iteration i and let δ be the value set with CONV=. The iterations stop when:

$$\left|\hat{\beta}^{(i)}_k - \hat{\beta}^{(i-1)}_k\right| < \alpha_k \cdot \delta \quad \text{for all } k; \quad \text{where} \quad \alpha_k = \begin{cases} \left|\hat{\beta}^{(0)}_k\right| & \text{for } \hat{\beta}^{(0)}_k \neq 0 \\ 0.1 & \text{for } \hat{\beta}^{(0)}_k = 0 \end{cases}$$

GMM= Specifies the weighting matrix to use for Generalized Method of Moments Estimation. If a matrix is provided it should be a symmetric matrix conforming to the dimensions in the equations described in the section GENERALIZED METHOD OF MOMENTS ESTIMATION in this chapter. Alternatively, SHAZAM will automatically compute the matrix corresponding to the keywords HETCOV, BARTLETT, TRUNC, QS, PARZEN or TUKEY. The option GMM=IDENTITY gives estimation by
NONLINEAR REGRESSION

N2SLS or N3SLS. See also the AUTCOV= option when using the GMM= option. If you don't know what you are doing and want to use GMM anyway, you should probably use either HETCOV or BARTLETT. The identity matrix is likely not a good choice for the weighting matrix.

GMMOUT= Saves the weighting matrix in the variable specified. This option is available with GMM=HETCOV, BARTLETT, TRUNC, QS, PARZEN or TUKEY.

IN=unit Reads back the values of the coefficients and log-likelihood function that were saved with the OUT= option. This option is only useful when there is something to input from a previous run. This option may be combined with the OUT= option to insure that the IN= file always contains the values of the coefficients from the most recent iteration. The COEF command should only be used with the IN= option if the starting values of some of the coefficients are to be modified. When both OUT= and IN= are used the same unit number is usually used. A binary file should be assigned to the unit with the SHAZAM FILE command or an operating system command.

ITER= Specifies the maximum number of ITERations. The default is 100.

METHOD= Specifies the nonlinear algorithm to use for estimation. The default is a Davidon-Fletcher-Powell algorithm. An alternative METHOD=BFGS, Broyden-Fletcher-Goldfarb-Shanno (BFGS), is described in Belsley [1980]. Another alternative is a slightly different D-F-P algorithm which can be obtained with METHOD=DFP. Simulated Annealing is specified via METHOD=SA, which is described in Goffe et al [1994]

HYBRID Specifies that Simulated Annealing should be used to estimate a set of starting points and subsequently the method specified in METHOD= should be used to find the solution to the problem.

SAITER= Specifies the maximum number of function trials the Simulated Annealing algorithm will evaluate before returning. The default value of this parameter is 1,000,000 and usually the solution is found in less iterations than this. Requires METHOD=SA or HYBRID.

SACONV= Specifies the convergence criterion of the Simulated Annealing algorithm. The default value of this parameter is 0.0001 for pure
Simulated Annealing and 0.1 for hybrid options. Requires METHOD=SA or HYBRID.

SAUPPER= A vector used to specify upper limits on the range of allowed coefficients. The default value is a vector with all elements equal to 10. Requires METHOD=SA or HYBRID.

SALOWER= A vector used to specify lower limits on the range of allowed coefficients. The default value is a vector with all elements equal to -10. Requires METHOD=SA or HYBRID.

SANEPS= Specifies how many function evaluations should be used to determine convergence of when performing Simulated Annealing. The default value is 4. If SANEPS evaluations lie within SACONV of each other the Simulated Annealing algorithm will terminate. Requires METHOD=SA or HYBRID.

SANS= Determines the number of cycles the Simulated Annealing algorithm iterates through. The algorithm adjusts an internal vector so that approximately half of the function evaluations lie within range. This calculation is done after NCOEF*SANS evaluations. The default value is 20. Requires METHOD=SA or HYBRID.

SANT= Determines how many evaluations that should be used by Simulated Annealing before reducing the, internal, temperature variable. After NCOEF*SANS*SANT function evaluations the temperature is reduced. The default value is 100. Requires METHOD=SA or HYBRID.

SATRF= A positive value, between 0 and 1, that determines how slowly simulated annealing reduces the internal temperature variable. The default is 0.85. Requires METHOD=SA or HYBRID.

SAUPFAC= A factor that can be used to specify the upper bounds array in terms of a factor applied to the initial conditions vector. This factor is overridden by the use of an SAUPPER vector. The default value is 10. Requires METHOD=SA or HYBRID.

SALOWFAC= A factor that is can be used to specify the lower bounds array in terms of a factor applied to the initial conditions vector. This factor is over...
ridden by the use of an SALOWER vector. The default is -10. Requires METHOD=SA or HYBRID.

NCOEF= Specifies the Number of different COEFFicients to be estimated. This option is required.

ORDER= Specifies the ORDER of autocorrelation to be corrected when the AUTO option is used. The default is ORDER=1.

OUT=unit Writes OUT on the unit specified the values of the coefficients and log-likelihood function after each iteration. This is quite useful for restarting the model in another run with the IN= option described above. When this option is used, a file must be assigned to the output unit as described in the chapter DATA INPUT AND OUTPUT. The values will be written in double precision (binary) all on one line. Units 11-49 are available for use.

PITER= Specifies the frequency with which ITERations will be Printed in the output. The default PITER=15 indicates that one out of every 15 iterations will be printed.

SIGMA= Saves the sigma matrix from systems estimation in the variable specified. For single equation estimation the estimate of σ^2 is saved.

START= Uses the values in the specified variable as starting values for the estimation. The order of the parameters should be the same as normally printed by the SHAZAM NL command, namely, the order that they appear on the EQ commands (followed by autocorrelation coefficients when the AUTO option is used). In some cases this may be an easier way to input starting values than by using the COEF command. Be careful to make sure that the length of the START= vector is equal to the number of coefficients specified with the NCOEF= option (plus the number of autocorrelation coefficients if any).

STEPSIZE= Specifies the stepsize to use with the NUMCOV and NUMERIC options to control the differential in numeric derivatives. The default is STEPSIZE=1E-4. The calculated covariance matrix may be very sensitive to this value.
ZMATRIX= Specifies a matrix to create and use to store the derivatives of the nonlinear function with respect to each parameter. This option should be used only when there is only one equation that is estimated. The option is not valid if the NUMERIC option is also used. The Z matrix is described in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Equation 6.2.3].

After estimation the temporary variables as described for the OLS command are $ERR, $K, $LLF, and $N. For the NL command, the temporary variable $LLF is used to store the function value. This will be either the value of the log-likelihood function or the minimized function value. For single equation estimation, available temporary variables are $SSE and $SIG2, and when the RSTAT option is used additional temporary variables are $R2OP and $RHO.

NONLINEAR LEAST SQUARES

The nonlinear equation with additive errors has the general form:

\[Y_t = f(X_t, \beta) + \epsilon_t \quad \text{for } t = 1, \ldots, N \]

The residual sum of squares is:

\[S(\beta) = \sum_{t=1}^{N} [Y_t - f(X_t, \beta)]^2 \]

With \(\epsilon \sim N(0, \sigma^2 I_N) \) the maximum likelihood estimator for \(\sigma^2 \) is \(\sigma^2 = S(\beta)/N \) and the maximum likelihood estimator is the value of \(\beta \) that maximizes the concentrated log-likelihood function (see Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Equation 12.2.85]):

\[L(\beta) = -\frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln \left(\frac{S(\beta)}{N} \right) - \frac{N}{2} \]

When the errors are normally distributed the maximum likelihood estimator is identical to the nonlinear least squares estimator which globally minimizes \(S(\beta) \).

The estimates have an interpretation as estimates from a linearized model that is constructed from a Taylor series approximation. Define the matrix of first derivatives evaluated at the converged estimates \(\hat{\beta} \) as:
\[Z(\tilde{\beta}) = \left. \frac{\partial f(X, \beta)}{\partial \beta} \right|_{\beta} \]

(The Z matrix can be saved with the ZMATRIX= option on the NL command). The linear pseudomodel (see Judge et al. [1988, Equation 12.2.14]) is:

\[\bar{Y}(\tilde{\beta}) = Z(\tilde{\beta})\beta + \varepsilon \quad \text{where} \quad \bar{Y}(\tilde{\beta}) = Y - f(X, \tilde{\beta}) + Z(\tilde{\beta})\tilde{\beta} \]

An OLS regression of \(\bar{Y}(\tilde{\beta}) \) on \(Z(\tilde{\beta}) \) will reproduce the parameter estimate \(\tilde{\beta} \).

The example below uses the NL command to estimate a demand equation with the Theil textile data. The model has one equation and three coefficients.

\[
\begin{array}{c}
\text{| NL 1 / NCOEF=3} \\
\ldots \text{NOTE..SAMPLE RANGE SET TO: 1, 17} \\
\text{| EQ CONSUME=A+B*INCOME+C*PRICE} \\
\text{|_COEF B 1 C -1 A 50} \\
\text{3 VARIABLES IN 1 EQUATIONS WITH 3 COEFFICIENTS} \\
\text{17 OBSERVATIONS} \\
\end{array}
\]

COEFFICIENT STARTING VALUES
A 50.00000 B 1.00000 C -1.00000

100 MAXIMUM ITERATIONS, CONVERGENCE = .000010

INITIAL STATISTICS :
TIME = .090 SEC. ITER. NO. 0 FUNCT. EVALUATIONS 1
LOG-LIKELIHOOD FUNCTION= -93.26261
COEFFICIENTS
 50.00000 1.00000 -1.00000
GRADIENT
 .2884071 29.68023 21.50215

INTERMEDIATE STATISTICS :
TIME = .150 SEC. ITER. NO. 15 FUNCT. EVALUATIONS 26
LOG-LIKELIHOOD FUNCTION= -54.73018
COEFFICIENTS
 70.36305 1.643421 -1.360359
GRADIENT
 -.5982383 -68.90536 -52.52647

FINAL STATISTICS :
TIME = .180 SEC. ITER. NO. 26 FUNCT. EVALUATIONS 37
LOG-LIKELIHOOD FUNCTION= -51.64706
COEFFICIENTS
 130.7066 1.061709 -1.382986
GRADIENT
 .6334375E-07 .6693914E-05 .5618457E-05

MAXIMUM LIKELIHOOD ESTIMATE OF SIGMA-SQUARED = 25.489
GTRANPOSE*INVERSE(H)*G STATISTIC - = .10715E-13

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>ST. ERROR</th>
<th>T-RATIO</th>
</tr>
</thead>
</table>
Note that the **EQ** command supplies names for the coefficients to be estimated. In the above example, the coefficients are A, B and C, the variables are *CONSUME, INCOME* and *PRICE*. The **COEF** command immediately follows the **EQ** command and specifies starting values for the coefficients. An **END** command should follow the **COEF** command. Notice that the estimation results for this example are identical to that illustrated in the chapter *ORDINARY LEAST SQUARES*. In the case of a linear equation, the **NL** command gives the same estimated coefficients as the **OLS** command, but the computational time required to run **NL** regressions is much higher.

A sufficient number of starting values must be included for all coefficients or SHAZAM will not run the estimation. If the **COEF** command is omitted and no starting values are assigned then SHAZAM uses a starting value of 1.0 for all coefficients.

In the above example the starting values are specified with the command:

```plaintext
coef b 1 c -1 a 50
```

If the coefficient names are not specified on the **COEF** command, SHAZAM assumes that the starting values appear in the same order as they appear on the **EQ** command. In the above example the coefficients on the **EQ** command appear in the order A, B and C. So an alternative way of entering starting values is with:

```plaintext
coef
50 1 -1
```

Testing for Autocorrelation

In a nonlinear model it is often desirable to use the Durbin-Watson statistic to test for autocorrelation. Following the method in White [1992] it is easy to approximate the exact distribution of the Durbin-Watson statistic using SHAZAM. In that article a reference was made to SHAZAM code to perform this test. Since the *Review of Economics and Statistics* does not like to print computer code, the method is shown here in the context of estimation of a CES (constant elasticity of substitution) production function. The form of the production function is:
\[Q = \alpha [\delta L^{-\rho} + (1 - \delta) K^{-\rho}]^{-\eta/\rho} \quad (\alpha > 0; \ 0 < \delta < 1; \ \rho > -1; \ \rho \neq 0, \ \text{and} \ \eta > 0) \]

where \(Q \) is output, and \(L \) and \(K \) represent two factors of production. The statistical model can be expressed as:

\[\log(Q) = \gamma - \frac{\eta}{\rho} \log[\delta L^{-\rho} + (1 - \delta) K^{-\rho}] + \varepsilon \]

where \(\gamma = \log(\alpha) \) and \(\varepsilon \) is a random error term. The CES function is discussed and a data set is provided in Griffiths, Hill and Judge [1993, Chapter 22]. The next list of SHAZAM commands sets up the nonlinear estimation and then obtains a \(p \)-value for the Durbin-Watson test statistic.

```sh
sample 1 30
read(table22.4) l k q
genr logq=log(q)

* Estimate the CES production function
nl 1 / ncoef=4 pcov zmatrix=z coef=beta predict=yhat
eq logq=gamma-(eta/rho)*log(delta*l**(1-rho)+(1-delta)*k**(-rho))
coef rho 1 delta .5 gamma 1 eta 1
end

* Estimate the elasticity of substitution
test 1/(1+rho)

* Generate the linear pseudomodel and compute the DURBIN-WATSON p-value
matrix ybar=logq-yhat+z*beta
ols ybar z / noconstant dwpvalue
```

The option `NCOEF=4` on the `NL` command specifies that there are 4 coefficients to estimate. The coefficients are \(\text{GAMMA, ETA, RHO and DELTA} \). The `COEF` command immediately follows the `EQ` command and gives the starting values for the iterative estimation. The Durbin-Watson \(p \)-value printed by the final `OLS` command above can be used with the Durbin-Watson statistic so it is not necessary to try to apply Durbin-Watson tables to a nonlinear problem.

MAXIMIZING A FUNCTION

This example is discussed in Greene [2003, p. 943]. The problem is to maximize a function of a single variable: \(f(\theta) = \ln \theta - 0.1 \theta^2 \). This problem can be solved by using the
NONLINEAR REGRESSION

MAXFUNC option on the **NL** command. The SHAZAM commands that follow specify a starting value of \(\theta = 5 \) for the iterative procedure.

```
sample 1 1
nl 1 / ncoef=1 maxfunc
eq log(theta)-0.1*theta**2
coeff theta 5
end
```

NONLINEAR SEEMINGLY UNRELATED REGRESSION

A set of \(M \) nonlinear equations can be written as:

\[
Y_i = f_i(X, \beta) + \varepsilon_i \quad \text{for } i = 1, \ldots, M
\]

Note that the inclusion of the matrix \(X \) and the coefficient vector \(\beta \) in all equations allows for common explanatory variables and coefficients across equations. It is assumed that there is contemporaneous correlation between errors in different equations. Let \(S \) be the \(M \times M \) matrix with \((i, j)^{th}\) element equal to:

\[
\varepsilon_i' \varepsilon_j = [Y_i - f_i(X, \beta)]' [Y_j - f_j(X, \beta)]
\]

With the assumption that the errors have a multivariate normal distribution the maximum likelihood estimator for \(\beta \) is obtained by maximizing the concentrated log-likelihood function (see Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Section 12.4.2]):

\[
L(\beta) = - \frac{NM}{2} \ln(2\pi) - \frac{N}{2} \ln(\lvert S / N \rvert) - \frac{NM}{2}
\]

The maximum likelihood estimator is the value of \(\beta \) that minimizes \(|S| \).

The next example shows how to set up a nonlinear estimation of the linear expenditure system as discussed in Judge et al. [1988, Section 12.4.3]. In this system it is assumed that consumer income \(Y \) is divided between 3 goods \(Q1, Q2 \) and \(Q3 \) whose prices are \(P1, P2 \) and \(P3 \) respectively. The coefficients to be estimated are the marginal budget shares (\(B1, B2, B3 \)) along with the subsistence quantities (\(G1, G2, G3 \)). Since this is a complete system of demand equations, it is well known that only 2 of the 3 equations need to be estimated (\(B3=1-B1-B2 \)). Thus, there are 2 equations and 5 coefficients to estimate. The SHAZAM commands might look like:
sample 1 30
read (table11.3) p1 p2 p3 y q1 q2 q3
genr pq1=p1*q1
genr pq2=p2*q2
nl 2 / ncoef=5 pcov
eq pq1=p1*g1+b1*(y-p1*g1-p2*g2-p3*g3)
eq pq2=p2*g2+b2*(y-p1*g1-p2*g2-p3*g3)
coef g1 2.903 g2 1.36 g3 13.251 b1 .20267 b2 .13429
end

* Compute B3
test 1-b1-b2

It is important to remember to eliminate 1 equation from the model when estimating systems of demand equations so that the system is not overdetermined.

ESTIMATION WITH AUTOREGRESSION ERRORS

The estimation of models with autoregressive errors is implemented with the AUTO option on the NL command. The estimation algorithm uses numeric derivatives and so the NUMERIC option is automatically set.

Single Equation Estimation

The nonlinear equation with errors that follow an autoregressive process of order p (AR(p) errors) has the form:

\[Y_t = f(X_t, \beta) + \varepsilon_t \]

with \[\varepsilon_t = \sum_{k=1}^{p} \rho_k \varepsilon_{t-k} + v_t \]

Parameter estimates are obtained by minimizing the objective function:
The number of coefficients to estimate is $K+p$ where K must be specified with the `NCOEF=` option and p is specified with the `ORDER=` option. Starting values can be requested with the `START=` option and values must be specified for the K coefficients in β followed by the p autocorrelation coefficients.

Nonlinear Seemingly Unrelated Regression Estimation

For the SUR model with M equations let $\varepsilon_{(t)}$ denote the vector of M disturbances for observation t and assume an AR(p) process represented as:

$$
\varepsilon_{(t)} = \sum_{k=1}^{p} R_k \varepsilon_{(t-k)} + v_{(t)}
$$

where the R_k are $M \times M$ matrices of autocorrelation coefficients. Further discussion is in Judge, Griffiths, Hill, Lütkepohl, and Lee [1985, Section 12.3].

The default estimation method is to assume that $R_k = \rho_k I_M$. If the `DRHO` option is used then the assumption is that R_k is a diagonal matrix. The `ACROSS` option implements the general case of a vector autoregressive model with no restrictions on the R_k matrix. When the `ACROSS` option is specified the autocorrelation coefficients are printed in column order (VEC(R_k)).

Let S be the $M \times M$ matrix with $(i,j)^{th}$ element equal to:

$$
\sum_{t=p+1}^{N} v_{it} v_{jt}
$$

Parameter estimates are obtained by minimizing $|S|$.

NONLINEAR TWO-STAGE LEAST SQUARES (N2SLS)

Consider a model of the form:

$$Y = f(Z,\beta) + \varepsilon$$

where Y is an $N \times 1$ vector of observations on the dependent variable, Z is the matrix of right-hand side variables in the equation, β is a $p \times 1$ vector of unknown parameters and ε is a random error vector. With X as a matrix of instrumental variables (usually all the exogenous variables in the system) the parameter estimates are obtained by minimizing the objective function:

$$\varepsilon'X(X'X)^{-1}X'\varepsilon$$

where

$\varepsilon = Y - f(Z,\beta)$
With estimated coefficients \(\hat{\beta} \) the estimated N2SLS residuals are obtained as:

\[
e = Y - f(Z, \hat{\beta})
\]

The estimated covariance matrix of \(\hat{\beta} \) is:

\[
\hat{\sigma}^2 (g'X (X'X)^{-1}X'g)^{-1} \quad \text{where} \quad \hat{\sigma}^2 = e'e / N
\]

and \(g \) is the \(N \times p \) matrix of derivatives \(\partial f(Z, \beta) / \partial \beta \) evaluated at \(\hat{\beta} \).

An example of N2SLS using the first equation of the Klein Model described in the chapter *TWO STAGE LEAST SQUARES AND SYSTEMS OF EQUATIONS* follows. To implement N2SLS with the `NL` command the user must specify a set of instrumental variables to be used. In the example the list of instrumental variables is given as \(W2, T, G, TIME1, PLAG, KLAG \) and \(XLAG \). In addition, SHAZAM automatically includes a constant in the list of instrumental variables.

```plaintext
|.* NONLINEAR TWO STAGE LEAST SQUARES
|_NL 1 W2 T G TIME1 PLAG KLAG XLAG / NCOEF=4
|_NOTE..SAMPLE RANGE SET TO: 1, 21
|_EQ C=A1*PLAG+A2*P+A3*W1W2+A0
|_END
11 VARIABLES IN 1 EQUATIONS WITH 4 COEFFICIENTS
NONLINEAR TWO-STAGE LEAST SQUARES: USING 8 INSTRUMENTAL EXOGENOUS VARIABLES
21 OBSERVATIONS

COEFFICIENT STARTING VALUES
A1  1.00000  A2  1.00000  A3  1.00000
A0  1.00000

100 MAXIMUM ITERATIONS, CONVERGENCE = .000010

INITIAL STATISTICS:
TIME = .130 SEC.  ITER. NO. 0  FUNCT. EVALUATIONS 1
FUNCTION VALUE= 11111.95  FUNCTION VALUE/N = 529.1406
COEFFICIENTS
1.000000  1.000000  1.000000  1.000000
GRADIENT
16117.80  16557.11  39581.22  913.6000

FINAL STATISTICS:
TIME = .250 SEC.  ITER. NO. 9  FUNCT. EVALUATIONS 13
FUNCTION VALUE= 9.157975  FUNCTION VALUE/N = .4360940
COEFFICIENTS
.2162340  .1730222E-01  .8101827  16.55476
GRADIENT
.1799183E-04  .1988876E-04  .4711613E-04  .1456845E-05

MAXIMUM LIKELIHOOD ESTIMATE OF SIGMA-SQUARED = 1.0441
GTRANSPOSE*INVERSE(H)*G STATISTIC - = .29445E-12
```
<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>ST. ERROR</th>
<th>T-RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.21623</td>
<td>0.10727</td>
</tr>
<tr>
<td>A2</td>
<td>0.17302E-01</td>
<td>0.11805</td>
</tr>
<tr>
<td>A3</td>
<td>0.81018</td>
<td>0.40250E-01</td>
</tr>
<tr>
<td>A0</td>
<td>16.555</td>
<td>1.3208</td>
</tr>
</tbody>
</table>

N2SLS Estimation with Autoregressive Errors

If the **AUTO** option is used for estimation with autoregressive errors then an appropriate set of instrumental variables must be specified in the `exogs` list on the NL command (see, for example, the discussion in Greene [2000, pp. 688-9]). For the model with AR(1) errors a choice of instrumental variables may be: \(Y_{t-1}, X_t \) and \(X_{t-1} \).

NONLINEAR THREE STAGE LEAST SQUARES (N3SLS)

Now consider a system of \(M \) equations such that equation \(i \) has the general form:

\[
f_i(Y, X, \beta) = \varepsilon_i \quad \text{for} \quad i = 1, \ldots, M
\]

The vector \(\beta \) has \(p \) parameters. The error covariances are given by \(E(\varepsilon_i \varepsilon'_j) = \sigma_{ij} I_N \). Denote \(\Sigma \) as the \(M \times M \) matrix with individual elements \(\sigma_{ij} \) and stack the \(\varepsilon_i \) vectors to obtain an \(MN \times 1 \) vector \(\varepsilon \). The N3SLS estimator is obtained by minimizing the objective function:

\[
\varepsilon' [\hat{\Sigma}^{-1} \otimes X(X'X)^{-1}X'] \varepsilon
\]

where \(\hat{\Sigma} \) is constructed from the N2SLS residuals. With the estimated N2SLS residuals for equation \(i \) in the \(N \times 1 \) vector \(\varepsilon_i \) the individual elements of \(\hat{\Sigma} \) are obtained as \(\hat{\sigma}_{ij} = e_i' e_j / N \). The covariance matrix of coefficients is estimated as:

\[
[G' (\hat{\Sigma}^{-1} \otimes X(X'X)^{-1}X') G]^{-1} \quad \text{where} \quad G = \begin{bmatrix} g_1 \\ \vdots \\ g_M \end{bmatrix}
\]

The \(g_i \) matrix is \(N \times p \) and it contains the partial derivatives of \(f_i(Y, X, \beta) \) with respect to \(\beta \) evaluated at the parameter estimates.

SHAZAM output for N3SLS estimation of the Klein Model is:

```
  * NONLINEAR THREE STAGE LEAST SQUARES
  _NL 3 W2 T G TIME1 PLAG KLAG XLAG / NCOEF=12 PITER=50
  ...NOTE..SAMPLE RANGE SET TO:  1,  21
```
NONLINEAR REGRESSION

|EQ| C=A1*PLAG+A2*P+A3*W1W2+A0
|EQ| I=B1*PLAG+B2*KLAG+B3*P+B0
|EQ| W1=C1*TIME1+C2*XLAG+C3*X+C0
|END|

14 VARIABLES IN 3 EQUATIONS WITH 12 COEFFICIENTS

NONLINEAR TWO-STAGE LEAST SQUARES: USING 8 INSTRUMENTAL EXOGENOUS VARIABLES

21 OBSERVATIONS

COEFFICIENT STARTING VALUES
A1 1.0000 A2 1.0000 A3 1.0000
A0 1.0000 B1 1.0000 B2 1.0000
B3 1.0000 B0 1.0000 C1 1.0000
C2 1.0000 C3 1.0000 C0 1.0000

100 MAXIMUM ITERATIONS, CONVERGENCE = .000010

INITIAL STATISTICS :
TIME = .090 SEC. ITER. NO. 0 FUNCT. EVALUATIONS 1
FUNCTION VALUE= 1348508. FUNCTION VALUE/N = 64214.68

COEFFICIENTS
1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000

GRADIENT
16117.80 16557.11 39581.22 913.6000 161577.1
1970580. 165951.4 9806.800 46201.60 233550.0
242535.3 3934.600

FINAL STATISTICS :
TIME = 2.130 SEC. ITER. NO. 19 FUNCT. EVALUATIONS 31
FUNCTION VALUE= 17.62146 FUNCTION VALUE/N = .8391173

COEFFICIENTS
.2162340 .1730221E-01 .8101827 16.55476 .6159436
-.1577876 .1502218 20.27821 .1303957 .1466738
.4388591 .6594422E-01

GRADIENT
-.913559E-07 .1209752E-06 -.1557105E-07 -.62684200E-08 -.1069811E-06
-.1600394E-05 -.1663395E-06 -.6411252E-08 -.1361892E-07 -.8107014E-07
.1330693E-07 -.9246286E-07

SIGMA MATRIX
1.0441
.43785 1.3832
-.38523 .19261 .47643

GTRANSPOSE*INVERSE(H)*G STATISTIC = .99128E-14

COEFFICIENT ST. ERROR T-RATIO
A1 .21623 .10727 2.0158
A2 .17302E-01 .11805 .14657
A3 .81018 .40250E-01 20.129
A0 16.555 1.3208 12.534
B1 .61594 .16279 3.7838
B2 -.15779 .36126E-01 -4.3677
B3 .15022 .17323 .86718
B0 20.278 7.5427 2.6885
C1 .13040 .29141E-01 4.4746
C2 .14667 .38836E-01 3.7767
C3 .43886 .35632E-01 12.316
C0 .65944E-01 1.0377 .63550E-01

*** NONLINEAR THREE STAGE LEAST SQUARES ***
GENERALIZED METHOD OF MOMENTS ESTIMATION

Single Equation Estimation
In a single equation the model follows the notation of the Nonlinear Two-Stage Least Squares model which is a special case of GMM. The general form of the equation is:

$$Y = f(Z, \beta) + \varepsilon$$

where Y is an $N \times 1$ vector of observations on the dependent variable, Z is the matrix of right-hand side variables in the equation, β is a $P \times 1$ vector of unknown parameters and ε is a random error vector. The model assumptions are $E(\varepsilon) = 0$ and $E(\varepsilon \varepsilon') = \Omega$ where Ω is unrestricted. With X as an $N \times K$ matrix of instrumental variables (usually all the predetermined variables in the system) the parameter estimates are obtained by minimizing the objective function:

$$\varepsilon' X (X' \Omega X)^{-1} X' \varepsilon \quad \text{where} \quad \varepsilon = Y - f(Z, \beta)$$

The matrix $(X' \Omega X)$ is known as the weighting matrix and the user must specify this matrix with the GMM= option either as the name of a matrix variable which contains the desired values or as one of the pre-set SHAZAM options described below. The estimated covariance matrix of the GMM estimates β is:

$$(g'X (X' \Omega X)^{-1} X'g)^{-1}$$

where g is the $N \times P$ matrix of derivatives $\partial f(Z, \beta)/\partial \beta$ evaluated at $\tilde{\beta}$.

There are a few preset options to allow SHAZAM to automatically compute the weighting matrix. If GMM=HETCOV is specified the White [1980] estimate of the matrix is used. The weighting matrix $(X' \Omega X)$ is estimated using the residuals e_t estimated from N2SLS as:

$$W_0 = \frac{1}{N} \sum_{t=1}^{N} e_t^2 X_t X_t'$$

where X_t is a $K \times 1$ vector of instrumental variables for observation t. If the disturbances are autocorrelated then the estimator proposed by Newey and West [1987] is:

$$W = W_0 + \frac{1}{N} \sum_{j=1}^{L} \sum_{t=j+1}^{N} w_{j} e_{t-j} \left(X_{t} X_{t-j} + X_{t-j} X_{t}' \right)$$

The weights w_j and the maximum lag length L must be chosen in advance. A number of alternative schemes are implemented in SHAZAM with the GMM=. option using the
keywords BARTLETT, TRUNC, PARZEN, QS or TUKEY. The lag length L can be specified with the AUTCOV= option and if this option is not specified a default setting of L will be used. The weighting scheme and the default value of L is set for the alternative methods as follows.

If $\text{GMM}=\text{BARTLETT}$ is specified then: $\quad w_j = 1 - \frac{j}{L + 1}$

If the AUTCOV= option is not specified then the automatic bandwidth formula in Newey and West [1991] is used:

$$L = 4 \left(\frac{N}{100} \right)^{\frac{2}{9}}$$

(rounded down to the nearest integer)

If $\text{GMM}=\text{TRUNC}$ is specified then: $\quad w_j = 1$ for all j, and

$$L = 4 \left(\frac{N}{100} \right)^{\frac{1}{4}}$$

If $\text{GMM}=\text{PARZEN}$ is specified then:

$$w_j = 1 - 6 \left(\frac{j}{L + 1} \right)^2 + 6 \left(\frac{j}{L + 1} \right)^3 \quad \text{for} \quad \left(\frac{j}{L + 1} \right) \leq 0.5$$

$$w_j = 2 \left(1 - \frac{j}{L + 1} \right)^3 \quad \text{for} \quad \left(\frac{j}{L + 1} \right) > 0.5$$

$$L = 4 \left(\frac{N}{100} \right)^{\frac{4}{25}}$$

If $\text{GMM}=\text{QS}$ is specified then the Quadratic Spectral estimator is used as suggested in Andrews [1991] with:

$$w_j = \left(\frac{25}{12 \pi^2 (j/(L + 1))^2} \right) \left[\frac{\sin \left(6 \pi j/(5 (L + 1)) \right)}{6 \pi j/(5 (L + 1))} - \cos \left(6 \pi j/(5 (L + 1)) \right) \right]$$

$$L = 4 \left(\frac{N}{100} \right)^{\frac{2}{25}}$$

If $\text{GMM}=\text{TUKEY}$ is specified then the Tukey-Hanning estimator is used with:
\[w_j = \left(1 + \cos \left(\frac{\pi j}{L + 1} \right) \right) / 2 \]

\[L = 4 \left(\frac{N}{100} \right)^{1/4} \]

Estimation of a System of Equations

When there is more than one equation the notation follows that of the N3SLS model. Given a system of \(M \) equations such that equation \(i \) has the general form:

\[f_i(Y, X, \beta) = \varepsilon_i \quad \text{for} \quad i = 1, \ldots, M \]

Stack the \(\varepsilon_i \) vectors to obtain an \(MN \times 1 \) vector \(\varepsilon \). The GMM estimator minimizes:

\[\varepsilon' (X \otimes I) [(X \otimes I)' \Omega (X \otimes I)]^{-1} (X \otimes I)' \varepsilon \]

where \(I \) is an \(M \times M \) identity matrix and \(\Omega \) is now a \((MN \times MN) \) matrix. The matrix \((X \otimes I) \) is the block diagonal matrix:

\[
\begin{bmatrix}
X & 0 & \cdots & 0 \\
0 & X & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X
\end{bmatrix}
\]

When \texttt{GMM=HETCOV} is used the weighting matrix \([(X \otimes I)' \Omega (X \otimes I)] \) is estimated as:

\[\frac{1}{N} \sum_{t=1}^{N} (e_t \otimes X_t)(e_t \otimes X_t)' \]

where \(e_t \) is an \(M \times 1 \) vector of estimated N3SLS residuals and \(X_t \) is a \(K \times 1 \) vector of instrumental variables for observation \(t \).

A similar multivariate procedure analogous to the single equation case is used for the other \texttt{GMM=} options. Note that the dimensions of the weighting matrix is now \(MK \times MK \). When the weighting matrix is shown on SHAZAM output it has been standardized by dividing by \(N \). A test of the overidentifying restrictions is obtained by multiplying the minimized function value by \(N \). This resulting test statistic (usually called \(J \)) is
distributed χ^2 with MK–P degrees of freedom under the null hypothesis where P is the number of parameters in the system.

The minimized function value is available in the temporary variable LLF. Note, however, that the function is not a log-likelihood function but the LLF variable is used in all SHAZAM nonlinear estimation to hold the function value.

Users should be aware that the weighting matrix can easily be singular especially for small sample sizes. In this case it is not possible to compute the inverse of the matrix and estimation will not be successful. If alternative forms of the matrix are used with possibly different values for the AUTCOV= option then it may become possible to create a non-singular weighting matrix.

SHAZAM commands for the estimation of the first two equations of the Klein Model are:

```
* Generalized Method of Moments estimation
nl 2 w2 t g time1 plag klag xlag / ncoef=8 gmm=hetcov nopsigma
eq c=a1*plag+a2*p+a3*w1w2+a0
eq i=b1*plag+b2*klag+b3*p+b0
end
```

SIMULATED ANNEALING

Simulated Annealing can be used to find solutions to problems that traditional gradient approaches are unable to solve. One advantage that Simulated Annealing has over more traditional gradient methods is that the fitting parameters can be bounded to an area of interest and initial conditions do not necessarily have to be specified. However, Simulated Annealing may also struggle to find a solution, if care is not taken with the option parameters.

The following example is taken from the NIST Nonlinear Least Squares Regression sample problems. This particular problem presents many challenges for the traditional gradient approaches, and without a reasonably good set of starting conditions, i.e. within 1% of the certified answers, the correct solution is normally not found.

Simulated annealing alone also struggles to find the certified solution. However, it does find a rough and ready solution, which can then be used as a good set of starting conditions. This is the essence of the HYBRID approach - Simulated Annealing finds a reasonable solution and then using the highly efficient Gradient method of your choice to find the final solution. An example of this follows:
* Set sample size and read data

```plaintext
sample 1 6
```

```plaintext
read y / cols=1 rows=6
109
149
149
191
213
224
```

```plaintext
read x / cols=1 rows=6
1
2
3
5
7
10
```

* Gradient method

```plaintext
nl 1 / ncoef=2 opgcov nodn
eq y=b1*(1-exp(-b2*x))
coef b1 1 b2 1
gen1 k=$k
format(2f30.15)
```

* Simulated Annealing Estimate

```plaintext
nl 1/ ncoef=2 saiter=1e8 opgcov saufac=1000 salowfac=0 sans=100
   method=sa nodn
eq y=b1*(1-exp(-b2*x))
coef b1 1 b2 1
gen1 k=$k
format(2f30.15)
```

* Hybrid Approach

```plaintext
nl 1/ ncoef=2 saiter=1e8 opgcov saufac=1000 salowfac=0 sans=100
   hybrid nodn
eq y=b1*(1-exp(-b2*x))
coef b1 1 b2 1
gen1 k=$k
format(2f30.15)
```

The example demonstrates the limitations of the traditional gradient approach. The algorithm fails to find a sensible solution. The use of Simulated Annealing achieves a better solution, though the best solution is obtained by using a **HYBRID** option whereby
the traditional gradient method seeks out the certified solution, BUT starting from the estimate obtained by the initial Simulated Annealing algorithm.
23. NONPARAMETRIC METHODS

"What is sought is found."

Sophocles, Oedipus Tyrannus

The NONPAR command provides features for nonparametric density estimation and regression smoothing techniques.

DENSITY ESTIMATION

The Univariate Kernel Method

The kernel method is a nonparametric approach to density estimation and a good exposition of this method is in Silverman [1986]. For observations X_t for $t = 1, \ldots, N$ kernel estimates of the probability density function are obtained as:

$$\hat{f}_N(x) = \frac{1}{N \cdot h} \sum_{t=1}^{N} K([(x - X_t) / h])$$

where h is a bandwidth or smoothing parameter and K is a kernel function with the property:

$$\int_{-\infty}^{\infty} K(u) du = 1$$

The DENSITY option on the NONPAR command is used to obtain kernel density estimates. The METHOD= option allows the use of the kernel functions:

<table>
<thead>
<tr>
<th>Kernel</th>
<th>METHOD= option</th>
<th>$K(u)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss</td>
<td>NORMAL</td>
<td>$\frac{1}{\sqrt{2\pi}} \exp(-u^2/2)$</td>
</tr>
<tr>
<td>Epanechnikov</td>
<td>EPAN</td>
<td>$I(</td>
</tr>
<tr>
<td>Quartic</td>
<td>QUARTIC</td>
<td>$I(</td>
</tr>
<tr>
<td>Triangular</td>
<td>TRIANG</td>
<td>$I(</td>
</tr>
<tr>
<td>Uniform</td>
<td>UNIFORM</td>
<td>$I(</td>
</tr>
</tbody>
</table>
The indicator function \(I = 1 \) if \(|u| \leq 1\) and 0 otherwise. The default setting for the bandwidth parameter is \(h = \lambda \cdot \hat{\sigma}_X \) where

\[
\lambda = \left\{ \frac{4}{(3 \cdot N)} \right\}^{1/5} \quad \text{and} \quad \hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=1}^{N} (X_t - \bar{X})^2
\]

This approximately optimal bandwidth for a normal kernel is described in Silverman [1986, p.45]. Alternative values for \(\lambda \) can be specified with the SMOOTH= option. The density estimates can be saved with the PREDICT= option.

The Multivariate Kernel Method

For the multivariate case where \(X_t = (X_{1t}, \ldots, X_{Kt}) \) a multivariate kernel function can be stated as a product of univariate kernel functions. A kernel function for \(K \)-dimensional \(u \) is:

\[
K(u) = K(u_1, \ldots, u_K) = \prod_{j=1}^{K} K(u_j)
\]

The multivariate kernel density estimate can then be expressed as:

\[
\hat{f}_N(x) = \frac{1}{N \cdot h} \sum_{t=1}^{N} K_h(x - X_t) = \frac{1}{N \cdot h} \sum_{t=1}^{N} \prod_{j=1}^{K} K\{(x_j - X_{jt}) / h_j\} \quad \text{where} \quad h = \prod_{j=1}^{K} h_j
\]

The bandwidth parameters are \(h_j = \lambda \cdot \hat{\sigma}_{x_j} \) and default settings are:

\[
\lambda = \left\{ \frac{4}{(N(2 \cdot K + 1))} \right\}^{1/(K+4)} \quad \text{and} \quad \hat{\sigma}_{x_j}^2 = \frac{1}{N} \sum_{t=1}^{N} (X_{jt} - \bar{X}_j)^2 \quad \text{for} \quad j = 1, \ldots, K
\]

Alternative values for \(\lambda \) can be specified with the SMOOTH= option and other estimates of the variance \(\sigma_{x_j}^2 \) can be requested with the INCOVAR= option.

To recognize covariance in the sample Rust [1988] uses a multivariate normal kernel function and this is implemented with the METHOD=MULTI option. Standardized variables are created as:

\[
Z_t = A(X_t - \bar{X}) / \lambda \quad \text{where} \quad A \hat{\Sigma}_X A' = I_K
\]
The smoothing parameter λ can be set with the `SMOOTH=` option and the default setting is:

$$\lambda = \{4/(N \cdot (2 \cdot K + 1))\}^{1/(K + 4)}$$

The $\hat{\Sigma}_x$ matrix can be input with the `INCOVAR=` option and the default is to use the sample variance-covariance matrix with a divisor of N. The multivariate normal kernel is then obtained as a product of univariate standard normal kernel functions:

$$\hat{f}_N(x) = \frac{1}{N \cdot h} \sum_{t=1}^{N} K_{h}(x - X_t) = \frac{1}{N \cdot h} \sum_{t=1}^{N} \prod_{j=1}^{K} K(z_j - Z_{jt}) \quad \text{where} \quad h = \lambda^K \cdot \|\hat{\Sigma}_x\|^{1/2}$$

NONPARAMETRIC REGRESSION

The `NONPAR` command provides nonparametric smoothing approaches to estimating the regression relationship:

$$Y_t = m(X_t) + \varepsilon_t \quad \text{for} \quad t = 1, \ldots, N$$

where $m = E(Y|X=x)$ is the unknown regression function. An informative presentation of the subject is contained in the monograph by Härdle [1990].

Kernel Estimators

The Nadaraya-Watson estimator is:

$$\hat{m}_N(x) = \frac{1}{N \cdot h} \sum_{t=1}^{N} W_{ht}(x) \cdot Y_t \quad \text{where} \quad W_{ht}(x) = K_h(x - X_t) / \hat{f}_N(x)$$

The kernel function K can be specified with the `METHOD=` option. The `SMOOTH=` and `INCOVAR=` options can also be used as described above.

In matrix notation the predicted values can be stated as $\hat{Y} = S'Y$. The $N \times N$ smoother matrix S can be saved with the `SMATRIX=` option. A feature of S is that it does not depend on Y and so the nonparametric estimate is linear in Y. This property facilitates model evaluation that is described later in this chapter.
The selection of an optimal value for the smoothing parameter λ is the subject of much discussion in the literature. Smaller values of λ give rougher estimators (with more wiggles) and larger values of λ give smoother estimators. One selection approach is to choose λ to minimize the CV or GCV (described below).

The estimated residuals are $e_t = y_t - \hat{y}_t$. A variance estimate (see Härdle [1990, p.100]) conditional on $X = x$ is:

$$\hat{\sigma}^2(x) = \frac{1}{N \cdot h} \sum_{t=1}^{N} W_{ht}(x) \cdot e_t^2$$

The conditional standard deviations evaluated at X_1, \ldots, X_N can be saved with the SIGMA= option on the NONPAR command.

The asymptotic variance (from Algorithm 4.2.1 in Härdle [1990]) is:

$$V_N(x) = \frac{c_K \hat{\sigma}^2(x)}{N \cdot h \cdot \hat{f}_N(x)} \quad \text{where} \quad c_K = \int K^2(u)du$$

For the Gaussian kernel $c_K = 1/(2\sqrt{\pi})$, for the Epanechnikov kernel $c_K = 3/5$, for the quartic kernel $c_K = 5/7$, for the triangular kernel $c_K = 2/3$ and for the uniform kernel $c_K = 0.5$. An approximate 95% confidence interval can then be constructed as:

$$\hat{m}_N(x) \pm 1.96 \sqrt{V_N(x)}$$

The prediction standard errors can be saved with the FCSE= option.

By taking derivatives of the regression function with respect to x_j slope estimates can be obtained at point x (see Härdle [1990, pp. 33-34]). The slope estimates are computed as:

$$b_j(x) = \frac{-1}{N \cdot h} \left[\sum_{t=1}^{N} G_{jt} \cdot K_h(x - X_t) \cdot Y_t - \hat{m}_N(x) \sum_{t=1}^{N} G_{jt} \cdot K_h(x - X_t) \right] / \hat{f}_N(x)$$

where, for the multivariate normal kernel,

$$G_{jt} = \frac{1}{\lambda^2} \sum_{k=1}^{K} \hat{\sigma}^{jk}_x (x_k - X_{kt})$$

and $\hat{\sigma}^{jk}_x$ is the (j,k) element of $\hat{\Sigma}_x^{-1}$.
When the Gaussian kernel is selected, the slope estimates are evaluated at each point and printed with the `PCOEF` option.

Kernel smoothing methods are less accurate near the boundary of the observation interval. Boundary modifications have been proposed by Rice [1984] (also described in Härdle [1990, pp. 130-132]) and others (see Hall and Wehrly [1991]). A multivariate extension of the Rice method is available as a `NONPAR` command option. A Euclidean distance measure is used to select points near the boundary. The idea is that if \(x \) is more than the arbitrary rule of 2 \(1/2 \) bandwidths from the center then a boundary modified estimate is used. If

\[
\sqrt{\frac{1}{K} \sum_{j=1}^{K} \left(\frac{(x_j - \bar{x}_j)}{h} \right)^2} > 2^{1/2}
\]

then the modified estimate is:

\[
\hat{m}_N(x) = \hat{m}_N(x; \lambda) + \gamma [\hat{m}_N(x; \lambda) - \hat{m}_N(x; \alpha \lambda)]
\]

where

\[
\gamma = \frac{R(\rho)}{[\alpha R(\rho / \alpha) - R(\rho)]}, \quad R(v) = w_1(v) / w_0(v)
\]

and

\[
w_0(v) = \int_{-1}^{v} K(u) du \quad \text{and} \quad w_1(v) = \int_{-1}^{v} u K(u) du
\]

The value for \(\rho \) (in the interval \([0,1]\)) can be set with the `BRHO` option. With \(\rho \geq 1, \gamma = 0 \). A value for \(\alpha \) must also be set and SHAZAM uses \(\alpha = 2 - \rho \) as recommended in Rice [1984]. Note that this boundary modified estimate is still linear in \(Y \).

SHAZAM makes direct use of the formula for the kernel regression estimator to compute estimates at each \(X_t \) for \(t = 1, \ldots, N \). The computation time increases rapidly with \(N \) and the use of efficient algorithms has been advocated. Algorithms that use fast Fourier transforms are available for calculating kernel estimators for bivariate data (see, for example, Härdle [1987]). The use of binning methods is described in Fan and Marron [1994]. These methods are not implemented here.

Locally Weighted Regression

The `METHOD=LOWESS` option on the `NONPAR` command implements the locally weighted regression method described in Cleveland [1979], Cleveland and Devlin [1988] and Cleveland, Devlin and Grosse [1988]. This method applies to the two-variable simple regression model. Suppose \(X_{a(t)}, \ldots, X_{b(t)} \) are the ordered \(r \) nearest neighbors of \(X_t \). For a value of \(f \) \((0 < f \leq 1) \) let \(r_f \) be \(f \cdot N \) rounded down to the nearest integer. The smoothing value \(f \) can be set with the `SMOOTH=` option.
For each \(t \) the locally weighted regression method finds estimates of \(\beta \) to minimize:

\[
\sum_{\tau=a(t)}^{b(t)} w_{\tau}(X_{\tau}) (Y_{\tau} - \beta (X_{\tau} - \bar{X}_t^w))^2
\]

where \(\bar{X}_t^w \) is the weighted average

\[
\bar{X}_t^w = \sum_{\tau=a(t)}^{b(t)} w_{\tau}(X_{\tau}) X_{\tau}
\]

The weights for the weighted least squares regression are computed as:

\[
w_{\tau}(X_{\tau}) = W((X_{\tau} - X_t)/h_t)
\]

where \(h_t = \max(X_t - X_{a(t)}, X_{b(t)} - X_t) \)

and \(W \) is the "tricube" weight function

\[
W(x) = I(|x| \leq 1) \cdot (1 - |x|^3)^3
\]

The fitted values can be expressed as

\[
\hat{Y}_t = \sum_{\tau=a(t)}^{b(t)} s_\tau(X_{\tau}) Y_{\tau}
\]

In matrix notation this can be stated as \(\hat{Y} = SY \). The \(N \times N \) matrix \(S \) is a linear smoother and can be saved with the SMATRIX= option. The estimated residuals are \(e_t = Y_t - \hat{Y}_t \).

The prediction standard errors that can be saved with the FCSE= option are:

\[
\hat{\sigma}_t = \sqrt{\frac{\hat{\sigma}^2}{\sum_{\tau=a(t)}^{b(t)} s_\tau^2(X_{\tau})}}
\]

The \(\hat{\sigma}^2 \) estimate is described in the section on model evaluation later in this chapter. An approximate \(100\cdot(1 - \alpha)% \) confidence interval (see Cleveland and Devlin [1988, p. 599]) can then be obtained as:

\[
\hat{Y}_t \pm t_{(\rho, \alpha/2)} \hat{\sigma}_t
\]

where \(t_{(\rho, \alpha/2)} \) is the critical value from a \(t \)-distribution with \(\rho \) degrees of freedom and

\[
\rho = \text{tr} \left\{ (1 - S)(1 - S)' \right\}^2 / \text{tr} \left\{ [(1 - S)(1 - S)']^2 \right\}
\]
The value for ρ is reported on the SHAZAM output as the \textsc{lookup degrees of freedom} and is saved in the temporary variable $DF1$.

The weighted least squares procedure can be iterated with recalculated weights to get robust locally weighted regression estimates. Let m be the median of the $|e_t|$ and define robustness weights by:

$$\delta_t = K(\frac{e_t}{6m})$$

where K is the quartic kernel $K(u) = I(|u| \leq 1) \cdot (1 - u^2)^2$.

The robustness weights δ_t can be saved with the \textsc{rweight=} option. The weighted least squares regression is repeated with the weights:

$$\delta_t w_\tau(X_t) \quad \text{for} \quad \tau = a(t), \ldots , b(t)$$

Robust locally-weighted regression is recommended for data sets with outliers or long-tailed error distributions (see Cleveland, Devlin and Grosse [1988, p.111]). However, the smoother matrix S now depends on the e_t and so the model diagnostics described below are not valid.

Computations can be reduced by noting that if $X_{t+1} = X_t$ then $\hat{Y}_{t+1} = \hat{Y}_t$. Computations can be speeded by obtaining an interpolation for \hat{Y}_{t+1} when $X_{t+1} \leq X_t + \Delta$. A value for Δ can be specified with the \textsc{delta=} option.

A general implementation of the LOWESS method considers polynomial regressions and this is not available with the \textsc{nonpar} command.

\textit{Model Evaluation}

The R^2 measure that is reported on the SHAZAM output is calculated as:

$$R^2 = 1 - \frac{e'e}{Y'Y - N\overline{Y}^2}$$

The error variance reported as $\textsc{sigma**2}$ on the SHAZAM output is computed as:

$$\hat{\sigma}^2 = \frac{1}{n_1} \sum_{t=1}^{N} e_t^2$$

where $n_1 = \text{tr}[(I - S)(I - S)']$.
The derivation of the degrees of freedom n_1 is discussed in Cleveland and Devlin [1988] and Hall and Marron [1990]. The "equivalent number of parameters" is obtained as $k_1 = N - n_1$. Note that k_1 is not necessarily an integer as is the case with OLS. Two other definitions for degrees of freedom are discussed in Buja, Hastie and Tibshirani [1989, pp. 469-470] and these compute the equivalent number of parameters as $k_2 = \text{tr}(SS')$ and alternatively $k_3 = \text{tr}(S)$. These measures are also reported on the SHAZAM output.

The value for n_1 is available in the temporary variable DF, the value for k_1 is stored in the temporary variable K and $\hat{\sigma}^2$ is saved in $SIG2$.

The adjusted R^2 and model selection statistics including the Akaike information criterion (AIC), the generalized cross-validation (GCV) statistic and others are calculated using the formula given in the chapter *A CHILD’S GUIDE TO RUNNING REGRESSIONS* where K is replaced with k_1.

The SHAZAM output also reports the cross-validation mean square error computed as:

$$CV = \frac{1}{N} \sum_{t=1}^{N} \left\{ e_t / (1 - s_{tt}) \right\}^2$$

where s_{tt} is the tth diagonal element of the smoother matrix S. The CV statistic is saved in the temporary variable CV. A discussion of the CV, GCV and other criterion is available in Eubank [1988, Chapter 2].

NONPAR COMMAND OPTIONS

In general, the format of the *NONPAR* command for regression estimation is:

```
NONPAR depvar indeps / options
```

where *depvar* is the dependent variable, *indeps* is a list of independent variables, and *options* is a list of options.

The format of the *NONPAR* command for kernel density estimation is:

```
NONPAR vars / DENSITY options
```

where *vars* is a list of variables.
Options as defined for the OLS command that are available are:

LIST, BEG=, and **END=**

The following additional options are available on the NONPAR command:

DENSITY

Calculates kernel density estimates. The kernel function is specified with the **METHOD=** option as **EPAN, MULTI, NORMAL, QUARTIC, TRIANG** or **UNIFORM**. The default is **METHOD=NORMAL** for the univariate case and **METHOD=MULTI** for the multivariate case. An example of the use of this option is in the section on *Bootstrapping Regression Coefficients* in the chapter *PROGRAMMING IN SHAZAM*.

GRAPH

Prepares gnuplot plots of the residuals and the fitted values. With the **DENSITY** option a plot of the density function is given (available for univariate density estimation only). For more information on this option see the chapter *PLOTS AND GRAPHS*. With the **GRAPH** option the **APPEND, OUTPUT=**, **DEVICE=**, **PORT=** and **COMMFILE=** options are also available as described for the **GRAPH** command.

PCOEF

For regression estimation with **METHOD=NORMAL, METHOD=MULTI** or **METHOD=LOWESS** this option prints the estimated slope coefficients evaluated at every point.

BRHO=

Used with kernel smoothing methods to specify a value of \(\rho (0 \leq \rho < 1) \) to use in calculating the Rice [1984] boundary modified estimate. This is not available with the Epanechnikov kernel. With the Gaussian or triangular kernel the value for \(\text{BRHO=} \) is rounded down to the nearest tenth and numeric integration is used. Integrals are computed explicitly for other kernels. (When this option is used the **DENSITY** and **FCSE=** options are not available).

COEF=

For regression estimation with **METHOD=NORMAL, METHOD=MULTI** or **METHOD=LOWESS** this option saves the estimated slope coefficients in an \(N \times K \) matrix.

DELTA=

Used with **METHOD=LOWESS** to group the observations as described above. The default is **DELTA=0**. When this option is used some model diagnostics are not provided and the **FCSE=** option is not available.
FCSE=
Saves the prediction standard errors in the variable specified. This option is not available with robust locally weighted regression.

HATDIAG=
Saves the diagonal elements of the smoother matrix S in the variable specified.

INCOVAR=
Used with kernel density estimation methods. For **METHOD**=MULTI the covariance matrix $\hat{\Sigma}_x$ must be a symmetric matrix stored in lower-triangular form such as that produced by the **COV**= option on the **STAT** command or the **SYM** function on the **MATRIX** command. For the product kernel methods this must be a K x 1 vector of variance estimates $\hat{\sigma}_j^2$. If this option is not specified then default values will be set as described above.

ITER=
Used with **METHOD**=LOWESS to specify the number of iterations for robust locally weighted regression. The default is **ITER**=0. With **ITER**=0 the estimation is by nonrobust locally weighted regression.

METHOD=
Specifies the kernel function or regression method. The available options are **EPAN**, **MULTI**, **NORMAL**, **QUARTIC**, **TRIANG**, **UNIFORM** and **LOWESS**. The default is **METHOD**=NORMAL for the univariate case and **METHOD**=MULTI for the multivariate case.

PREDICT=
Saves the predictions from the regression estimation in the variable specified. When the **DENSITY** option is used the **PREDICT**= option saves the density estimates in the variable specified.

RESID=
Saves the residuals from the regression estimation in the variable specified.

RWEIGHTS=
For **METHOD**=LOWESS saves the robustness weights in the variable specified. This is not used when **ITER**=0.

SIGMA=
For kernel smoothing methods saves the conditional standard errors $\hat{\sigma}_i$ in the variable specified.

SMATRIX=
Saves the N x N smoother matrix in the variable specified.

SMOOTH=
Specifies the value of the smoothing parameter. For kernel density estimation methods the default values are described above. For
METHOD=LOWESS the default for the smoothing fraction f is SMOOTH=0.5.

Temporary variables that are available following regression estimation are:

$ADR2, $CV, $DF, $DF1, ERR, $K, $N, $R2, $SIG2 and $SSE.

The model selection test statistics are available in the temporary variables:

$AIC, $FPE, $GCV, $HQ, $LAIC, $LSC, $RICE, $SC and $SHIB

EXAMPLES

This example is from Rust [1988] and is designed to show the limitations of OLS when the relationship is nonlinear. With N=50, values for X_t are generated from a uniform distribution on (0,1) and values for the errors ε_t are generated from a N(0,0.1) distribution. The Y_t are generated as:

$$ Y_t = 1 - 4(X_t - 0.5)^2 + \varepsilon_t $$

The SHAZAM command file is:

```
sample 1 50
set ranfix
genr x=uni(1)
genr e=nor(.1)
genr y = 1 - 4*(x-.5)**2 + e
ols y x / anova
nonpar y x
stop
```

SHAZAM results comparing OLS regression and nonparametric regression with a normal kernel function are:

```
|_SAMPLE 1 50
|_SET RANFIX
|_GENR X=UNI(1)
|_GENR E=NOR(.1)
|_GENR Y = 1 - 4*(X-.5)**2 + E
|_OLS Y X / ANOVA
OLS ESTIMATION
  50 OBSERVATIONS DEPENDENT VARIABLE = Y
...NOTE..SAMPLE RANGE SET TO:  1,  50
```
R-SQUARE = .0001 R-SQUARE ADJUSTED = -.0208
VARIANCE OF THE ESTIMATE - SIGMA**2 = 9.8797E-01
STANDARD ERROR OF THE ESTIMATE - SIGMA = .31432
SUM OF SQUARED ERRORS - SSE = 4.7423
MEAN OF DEPENDENT VARIABLE = .70496
LOG OF THE LIKELIHOOD FUNCTION = -12.0592

MODEL SELECTION TESTS - SEE JUDGE ET AL. (1985, P. 242)
AKAIKE (1969) FINAL PREDICTION ERROR - FPE = .10275
(AKAIKE (1969) FINAL PREDICTION ERROR - FPE IS ALSO KNOWN AS AMEMIYA PREDICTION CRITERION - PC)
AKAIKE (1973) INFORMATION CRITERION - LOG AIC = -2.2755

MODEL SELECTION TESTS - SEE RAMANATHAN (1992, P. 167)
CRRAVEN-WAHBA (1979)
GENERALIZED CROSS VALIDATION - GCV = .10291
HANNAN AND QUINN (1979) CRITERION = .10578
RICE (1984) CRITERION = .10309
SHIBATA (1981) CRITERION = .11091
AKAIKE (1974) INFORMATION CRITERION - AIC = .10274

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR 48 DF P-VALUE CORR. COEFFICIENT AT MEANS
X -8.294E-02 .1595 -5.200E-01 .959 .008 .0075 .0054
CONSTANT .70876 .8555E-01 8.285 .000 .767 .0000 1.0054

| NONPARAMETRIC REGRESSION USING KERNEL=NORMAL |
50 OBSERVATIONS DEPENDENT VARIABLE = Y
...NOTE..SAMPLE RANGE SET TO: 1, 50

THE BANDWIDTH/SMOOTHING PARAMETER IS SET BY DEFAULT
NONPARAMETRIC REGRESSION USING KERNEL=NORMAL
NUMBER OF VARIABLES= 1 NUMBER OF OBSERVATIONS= 50

BANDWIDTH PARAMETER = .48439

VARIABLE MEAN VARIANCE
X .45826 .77671E-01

R-SQUARE = .7607 R-SQUARE ADJUSTED = .7442
ERROR VARIANCE - SIGMA**2 = .24756E-01
STANDARD ERROR - SIGMA = .15734
SUM OF SQUARED ERRORS - SSE = 1.1347
EQUIVALENT NUMBER OF PARAMETERS - K1 = 4.1670
- K2 = 2.4716
- K3 = 3.3193

CROSS-VALIDATION MEAN SQUARE ERROR = .27498E-01

MODEL SELECTION TESTS - SEE JUDGE ET AL. (1985, P. 242)
AKAIKE (1969) FINAL PREDICTION ERROR - FPE = .26820E-01
(AKAIKE (1969) FINAL PREDICTION ERROR - FPE IS ALSO KNOWN AS AMEMIYA PREDICTION CRITERION - PC)
AKAIKE (1973) INFORMATION CRITERION - LOG AIC = -3.6190
SCHWARZ (1978) CRITERION - LOG SC = -3.4597

MODEL SELECTION TESTS - SEE RAMANATHAN (1992, P. 167)
CRRAVEN-WAHBA (1979)
GENERALIZED CROSS VALIDATION - GCV = .27007E-01
HANNAN AND QUINN (1979) CRITERION = .28486E-01
RICE (1984) CRITERION = .27232E-01
SHIBATA (1981) CRITERION = .26476E-01
| SCHWARZ (1978) CRITERION - SC | .31440E-01 |
| AKAIKE (1974) INFORMATION CRITERION - AIC | .26809E-01 |
| STOP |
24. POOLED CROSS-SECTION TIME-SERIES

"Branch banking...will mean, I suggest in all humility, the beginning of the end of the capitalist system."

John T. Flynn
Business writer, 1933

Pooling methods can be used to combine cross-section and time series data. Consider \(N \) cross-sectional units (a cross-sectional unit is, for example, a household, an industry or a region) with \(T_i \) observations for cross-section \(i, i = 1, \ldots, N \). The regression equation can be written as:

\[
Y_{it} = X_{it}'\beta + \varepsilon_{it} \quad \text{for } t = 1, \ldots, T_i; \quad i = 1, \ldots, N
\]

where \(\beta \) is a \(K \times 1 \) vector of unknown parameters and \(\varepsilon_{it} \) is a random error.

Cross-Section Heteroskedasticity and Time-wise Autoregression

The Parks [1967] method (described in Kmenta [1986, Section 12.2, pp.616-625] and Greene [2003, Section 13.9]) employs a set of assumptions on the disturbance covariance matrix that gives a cross-sectionally heteroskedastic and timewise autoregressive model. The **POOL** command in SHAZAM provides features for estimating this model and some variations of it. The assumptions of the model are:

\[
E(\varepsilon_{it}^2) = \sigma_i^2 \quad \text{heteroskedasticity}
\]
\[
E(\varepsilon_{it}\varepsilon_{jt}) = 0 \quad \text{for } i \neq j, \text{ cross-section independence}
\]
\[
\varepsilon_{it} = \rho_{i,t-1} + v_{it} \quad \text{autoregression}
\]

and \(E(v_{it}) = 0, E(v_{it}^2) = \phi_{ii}, E(v_{it}v_{js}) = 0 \) for \(i \neq j \) or \(t \neq s \), and \(E(\varepsilon_{i,t-1}v_{jt}) = 0 \).

A balanced panel data set contains cross-sections observed over the same time period so that each cross-section has \(T \) observations. The total number of observations is then \(N \cdot T \). With balanced panels, the assumptions can be extended to allow for contemporaneous cross-section correlation so that \(E(\varepsilon_{it}\varepsilon_{jt}) = \sigma_{ij} \) and \(E(v_{it}v_{jt}) = \phi_{ij} \).
An estimate for β is obtained by a generalized least squares (GLS) procedure. The estimation proceeds with the following steps.

STEP 1: Estimate β by OLS and obtain residuals e_{it}.

STEP 2: Use the residuals to compute $\hat{\rho}_i$ as estimates of the ρ_i. The **POOL** command allows for different estimation methods. The least squares estimation method (the default method) is:

$$
\hat{\rho}_i = \frac{\sum_{t=2}^{T_i} e_{it} e_{i,t-1}}{\sum_{t=2}^{T_i} e_{i,t-1}^2} \quad \text{for } i = 1, \ldots, N
$$

On the SHAZAM output the $\hat{\rho}_i$ are listed as **RHO VECTOR**. When the **SAME** option is specified the same autoregressive parameter is used for all cross-sections as follows:

$$
\hat{\rho}_1 = \ldots = \hat{\rho}_N = \frac{\sum_{i=1}^{N} \sum_{t=2}^{T_i} e_{it} e_{i,t-1}}{\sum_{i=1}^{N} \sum_{t=2}^{T_i} e_{i,t-1}^2}
$$

The **CORCOEF** option ensures values in the interval $[-1,+1]$ by estimating the autoregressive parameter as the sample correlation coefficient between e_{it} and $e_{i,t-1}$.

STEP 3: Use the $\hat{\rho}_i$'s to transform the observations, including the first observation (see Kmenta [1986, Equation 12.27, p.619]) and apply OLS to the transformed model. In matrix notation, the transformed model can be expressed as:

$$
\hat{P}Y = \hat{P}X\beta + v
$$

where \hat{P} is the block diagonal matrix:

$$
\hat{P} = \begin{bmatrix}
\hat{P}_1 & 0 & 0 \\
0 & \hat{P}_2 & 0 \\
0 & 0 & \hat{P}_N
\end{bmatrix}
$$

and \hat{P}_i is the $T_i \times T_i$ matrix:
POOLED CROSS-SECTION TIME-SERIES

\[
\hat{P}_i = \begin{bmatrix}
\sqrt{1 - \hat{\rho}_i^2} & 0 & 0 & \cdots & 0 \\
-\hat{\rho}_i & 1 & 0 & \cdots & 0 \\
0 & -\hat{\rho}_i & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -\hat{\rho}_i & 1
\end{bmatrix}
\quad \text{for } i = 1, \ldots, N
\]

With residuals \(\hat{v}_{it} \) the estimated cross-section error variances (reported as the \textsc{diagonal of phi matrix} on the SHAZAM output) are:

\[
\hat{\phi}_{ii} = \frac{1}{T_i - K} \sum_{t=1}^{T_i} \hat{v}_{it}^2
\quad \text{for } i = 1, \ldots, N
\]

If the \textsc{dn} option is used the divisor is \(T_i \) instead of \(T_i - K \). The following matrix is constructed:

\[
\hat{\Phi} = \begin{bmatrix}
\hat{\phi}_{11} I_{T_1} & 0 & 0 \\
0 & \hat{\phi}_{22} I_{T_2} & 0 \\
\vdots & \ddots & \ddots \\
0 & 0 & \hat{\phi}_{NN} I_{T_N}
\end{bmatrix}
\]

With balanced panels, if the \textsc{full} option is specified then contemporaneous error correlation is recognized and the matrix \(\hat{\Phi} \) is calculated with elements:

\[
\hat{\phi}_{ij} = \frac{1}{T - K} \sum_{t=1}^{T} \hat{v}_{it} \hat{v}_{jt}
\]

The \(\hat{V} \) matrix is then generalized to:

\[
\hat{V} = \hat{\Phi} \otimes I_T
\]

On the SHAZAM output the estimated error covariance matrix \(\hat{\Phi} \) is reported as the \textsc{phi matrix}. When \(T < N \) the matrix \(\hat{\Phi} \) is singular and the \textsc{full} option cannot be used.

STEP 4: GLS estimates are obtained as:

\[
\hat{\beta} = \left(X' \hat{\Omega}^{-1} X \right)^{-1} X' \hat{\Omega}^{-1} Y
\quad \text{where} \quad \hat{\Omega}^{-1} = \hat{P} \hat{V}^{-1} \hat{P}
\]
The procedure may be iterated to convergence with the \texttt{ITER=} option. However this may not lead to efficiency gains in small samples. Let \(\hat{\beta}^{(i)} \) be the parameter estimates at iteration \(i \). The iterative estimation stops when the following convergence criteria is met:

\[
\left| \frac{\hat{\beta}_k^{(i)} - \hat{\beta}_k^{(i-1)}}{\hat{\beta}_k^{(i)}} \right| < \delta \quad \text{for } k = 1, \ldots, K
\]

where \(\delta \) can be set with the \texttt{CONV=} option and the default is \(\delta = 0.001 \).

Consider the lower triangular matrix \(\hat{P}^* \) such that \(\Omega^{-1} = \hat{P}^* \hat{P}^* \). The residuals are calculated as:

\[
\tilde{v} = \hat{P}^* Y - \hat{P}^* X \hat{\beta}
\]

The variance of the residuals (reported as \texttt{SIGMA**2} on the SHAZAM output) is computed as:

\[
\hat{\sigma}^2 = \frac{1}{\sum_{i=1}^{N} T_i - K} \sum_{i=1}^{N} \sum_{t=1}^{T_i} \tilde{v}_{it}^2
\]

When the \texttt{DN} option is used the divisor is \(\sum_{i=1}^{N} T_i \).

As a goodness-of-fit measure the SHAZAM output reports the Buse R\(^2\) (see Buse [1973]) as described in the chapter \textit{GENERALIZED LEAST SQUARES}. This is computed using the \textit{estimated PHI MATRIX}. The result is that, unlike the usual R\(^2\), the Buse R\(^2\) is not guaranteed to be a nondecreasing function of the number of explanatory variables.

The Durbin-Watson statistic (reported with the \texttt{RSTAT} option) is calculated as:

\[
\frac{\sum_{i=1}^{N} \sum_{t=2}^{T_i} (\tilde{v}_{it} - \tilde{v}_{i,t-1})^2}{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \tilde{v}_{it}^2}
\]

Note that the Durbin-Watson statistic is appropriate as a test for autocorrelation only when the option \texttt{RHO=}0 is used and when there are no lagged dependent variables as explanatory variables.

When the \texttt{UT} option is specified the residuals that are saved with the \texttt{RESID=} option are calculated as the untransformed residuals:
\[\tilde{e}_{it} = Y_{it} - X'_{it} \hat{\beta} \]

When the BLUP option is specified the predicted values that are saved with the PREDICT= option are computed as:

\[
\begin{align*}
\hat{Y}_{i1} &= X'_{i1} \hat{\beta} \\
\hat{Y}_{it} &= X'_{it} \hat{\beta} + \hat{\rho}_i (\hat{Y}_{i,t-1} - X'_{i,t-1} \hat{\beta}) \quad \text{for} \quad t = 2, \ldots, T_i \\
\end{align*}
\]

for \(i = 1, \ldots, N \)

Lagrange Multiplier Tests

With balanced panels and serially uncorrelated errors, the SHAZAM output reports test statistics computed from the pooled OLS residuals \(e_{it} \). A Lagrange multiplier statistic (see Greene [2003, p. 328]) for testing for cross-section heteroskedasticity is calculated as:

\[
\frac{T}{2} \sum_{i=1}^{N} \left(\frac{\hat{\sigma}_{ii}^2}{\hat{\sigma}^2} - 1 \right)^2 \quad \text{where} \quad \hat{\sigma}_{ij} = \frac{1}{T} \sum_{t=1}^{T} e_{it} e_{jt} \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \hat{\sigma}_{ii}
\]

With the assumption of normality, there is evidence to reject the hypothesis of homoskedasticity if the statistic exceeds the critical value from a chi-square distribution with \(N-1 \) degrees of freedom.

The Breusch-Pagan [1980] Lagrange multiplier test gives a test for a diagonal covariance matrix (that is, no cross-section correlation). The statistic is:

\[
T \sum_{i=2}^{N} \sum_{j=1}^{i-1} r_{ij}^2 \quad \text{where} \quad r_{ij}^2 = \frac{\hat{\sigma}_{ij}^2}{\hat{\sigma}_{ii} \hat{\sigma}_{jj}}
\]

Under the null hypothesis of a diagonal covariance structure the statistic has an asymptotic chi-square distribution with \(N(N-1)/2 \) degrees of freedom.

Panel-Corrected Standard Errors

Some applied researchers (see Beck and Katz [1995] and Greene [2003, p. 323]) recommend the use of pooled OLS estimation with standard errors that are adjusted for cross-section heteroskedasticity and cross-section correlation ("panel corrected standard errors"). The HETCOV option on the POOL command implements OLS estimation with the calculation of a heteroskedastic-consistent covariance matrix for pooled regression models.
With balanced panels, when the **HETCOV** option is specified, the covariance matrix for OLS is estimated as:

\[(X'X)^{-1}(X'(\hat{\Phi} \otimes I_T)X)(X'X)^{-1}\]

where \(\hat{\Phi}\) is an NxN matrix with the \((i,j)th\) element \(\sum_{t=1}^{T} e_{it}e_{jt} / T\).

When the **CSINDEX=** and **HETCOV** options are specified on the **POOL** command a diagonal \(\Phi\) matrix is assumed. The covariance matrix for OLS is estimated as:

\[(X'X)^{-1}\left(\sum_{i=1}^{N} \hat{\sigma}_{ii}X'_iX_i\right)(X'X)^{-1}\]

When the **AR1** and **HETCOV** options are specified, parameter estimates are obtained by applying OLS to data transformed to correct for serial correlation. Panel corrected standard errors are then calculated and reported. A common cross-section autocorrelation coefficient, as recommended by Beck and Katz [1995], can be forced with the **SAME** option.

POOL COMMAND OPTIONS

The format of the **POOL** command is:

POOL depvar indeps / **NCROSS=** options

where **depvar** and **indeps** are the names of the dependent and independent variables. The **NCROSS=** option **must** specify the number of cross-sectional units in the data. SHAZAM will then figure out the number of time periods from the total number of observations. With balanced panels, the number of time periods can be specified with the **NTIME=** option. In this case SHAZAM will figure out the number of cross-sectional units. For unbalanced panels and data sets with missing values, the **CSINDEX=** option must be specified.

The data should be arranged so that all observations of a particular cross-sectional unit are together. Therefore, SHAZAM will require a complete time-series for the first group followed by a time-series for the second group, etc. If the data is not set up in this fashion it must be sorted before estimation of the model. In some cases the SHAZAM **SORT** command will help to rearrange the data.
Estimation with AR(1) errors assumes that the time series observations for each cross-section are equally spaced. This may not be appropriate with missing values.

Options as defined for the **OLS** command that are available are:

Options as defined for the **GLS** command that are available are:

- **BLUP** and **UT**

Additional options available on the **POOL** command are:

- **AR1**
 - Transform the observations to correct for AR(1) errors, but do not allow for cross-section heteroskedasticity. When this option is specified the **SAME**, **CORCOEF** and **HETCOV** options are also available.

- **CORCOEF**
 - Estimates the autoregressive parameters \(\rho_i \) using the correlation coefficient form, the alternative method described by Kmenta [1986, Equation 12.26]. This method confines the estimate of \(\rho_i \) to the interval \([-1, +1]\).

- **DN**
 - Uses a divisor of \(T_i \) instead of \(T_i - K, i = 1, \ldots, N \) when calculating the PHI matrix. That is, no degrees of freedom correction is considered in the estimation of error variances.

- **FIXED**
 - Estimates a fixed effects model. This model assumes that the intercept varies across cross-sections. Discussion is available in Greene [2003, Chapter 13] and Wooldridge [2006, Chapter 14].

- **FULL**
 - Estimates the **FULL** cross-sectionally correlated and time-wise autoregressive model (see Kmenta [1986, pp. 622-625]). This option is not available with the **CSINDEX=** option. If the **FULL** option is not specified then the model assumptions are cross-sectional heteroskedasticity with cross-sectional independence. The **UT** or **BLUP** options are recommended as the transformed residuals in the **FULL** model are sensitive to order of the cross-sections and have no useful interpretation. The **FULL** option is not available when \(N > T \) (when there are a large
number of cross-sections but the number of time series is few). When \(N > T \) the estimated error covariance matrix \(\Phi \) is singular and SHAZAM will terminate with the message `MATRIX IS NOT POSITIVE DEFINITE`.

HETCOV

For pooled OLS estimation, calculate a panel-corrected covariance matrix of the coefficient estimates and report the panel-corrected standard errors. If the `AR1` option is also specified then the estimation considers AR(1) errors for each cross-section.

MULSIGSQ

The estimated covariance matrix of coefficients is calculated using Equation 12.39 in Kmenta [1986, p. 623]. However, some econometricians believe that this matrix should be multiplied by the overall estimate of \(\sigma^2 \). The **MULSIGSQ** option does this multiplication. This option is the default, but could be turned off with the **NOMULSIGSQ** option.

OLS

Estimation by pooled OLS.

PCOV

Prints the covariance matrix of coefficients. In addition it prints the \(\Phi \) matrix if `NCROSS` is greater than 8. If `NCROSS` is less than 8 the \(\Phi \) matrix is always printed.

SAME

Forces the \(\rho_i \) to be the same for each of the cross-sectional units.

COEF=

Saves the estimated coefficients, the RHO vector, and the square root of the diagonal elements of the \(\Phi \) matrix in the variable specified.

CONV=

Specifies a convergence criterion to stop the iterative procedure when the `ITER=` option is used. The default is 0.001.

CSINDEX=

Specifies a variable that contains the cross-section identifier for each observation. The cross-section identifier must be a positive number. The `NCROSS` option must also be specified. If the `CSINDEX` option is not specified then the estimation assumes balanced panels.

ITER=

Specifies the maximum number of iterations if an iterative procedure is desired. If this option is not specified then one iteration is done.

NCROSS=

Specifies the number of cross-sectional units in the data. This option is required. With balanced panels, the `NTIME` option can be used as a substitute.
POOLED CROSS-SECTION TIME-SERIES

NTIME= With balanced panels, specifies the number of time periods in the data. This option is required if the NCROSS= option is not used. If both NCROSS= and NTIME= are specified, NCROSS= is ignored.

RHO= Specifies a fixed value of ρ to use. If this is not specified the autoregressive parameters are estimated. When this option is used the SAME option is automatically in effect. This option is commonly used with RHO=0 to suppress the autocorrelation correction so that only the heteroskedastic correction is performed.

The available temporary variables on the POOL command are:

ANF, DF, DW, ERR, K, LLF, N, $R2$, $R2OP$, RAW, RHO, $SIG2$, SSE, SSR, SST, $ZANF$, ZDF, $ZSSR$ and $ZSST$.

For more information on temporary variables see the chapter MISCELLANEOUS COMMANDS AND INFORMATION and the chapter ORDINARY LEAST SQUARES.

EXAMPLES

This example uses a data set from Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Table 11.5, p. 477]. The data set contains 10 years of cost and production data for four industries. The SHAZAM commands below set the data up in the form that is accepted by the POOL command. That is, the cost data is stacked in the variable C and the production data is stacked in the variable Q.

*Set Sample and read data inline
sample 1 10
read c1 c2 c3 c4 q1 q2 q3 q4
43.72 51.03 43.90 64.29 38.46 32.52 32.86 41.86
45.86 27.75 23.77 42.16 35.32 18.71 18.52 28.33
4.74 35.72 28.60 61.99 3.78 27.01 22.93 34.21
40.58 35.85 27.71 34.26 35.34 18.66 25.02 15.69
25.86 43.28 40.38 47.67 20.83 25.58 35.13 29.70
36.05 48.52 36.43 45.14 36.72 39.19 27.29 23.03
50.94 64.18 19.31 35.31 41.67 47.70 16.99 14.80
42.48 38.34 16.55 35.43 30.71 27.01 12.56 21.53
25.60 45.39 30.97 54.33 23.70 33.57 26.76 32.86
49.81 43.69 46.60 59.23 39.53 27.32 41.42 42.25

* Stack the columns into a long vector
matrix c=(c1'|c2'|c3'|c4')
\textbf{matrix} \quad q=(q1'|q2'|q3'|q4')' \\
\textbf{sample} \quad 1 \ 40

* Pooling by OLS with panel-corrected standard errors
\texttt{pool c q / ncross=4 ols hetcov rstat}

* Pooling with cross-section heteroskedasticity,
 contemporaneous cross-section correlation and AR1 errors
\texttt{pool c q / ncross=4 full dn nomulsigsq}

* Create cross-section dummy variables.
 Set the number of cross-sections
\texttt{gen1 nc=4} \\
\textbf{matrix} \quad csdum=seas(40,-nc)

* Set the number of time periods
\texttt{gen1 nt=10}

* Generate an index for each cross-section
\texttt{genr csindex=sum(seas(nt))}

* Generate a repeating time index for the 10 observations
\texttt{genr tindex=time(0)-nt*(csindex-1)}

* Estimation with cross-section dummy variables
\texttt{pool c q csdum / ncross=4 noconstant full dn nomulsigsq}

The above commands show a number of alternative estimation methods available with the \texttt{POOL} command. The \texttt{DN} and \texttt{NOMULSIGSQ} options are used to follow the presentation in Greene [2003, Section 13.9]. The example shows how to generate cross-section dummy variables as well as how to construct a time index for each cross-section. The SHAZAM output is:

```
| SAMPLE 1 10 |
| READ C1 C2 C3 C4 Q1 Q2 Q3 Q4 |
| 8 VARIABLES AND 10 OBSERVATIONS STARTING AT OBS 1 |

| * Stack the columns into a long vector |
| _MATRIX C=(C1'|C2'|C3'|C4')' |
| _MATRIX Q=(Q1'|Q2'|Q3'|Q4')' |

| SAMPLE 1 40 |
| * Pooling by OLS with panel-corrected standard errors |
| _POOL C Q / NCROSS=4 OLS HETCOV RSTAT |
| POOLED CROSS-SECTION TIME-SERIES ESTIMATION |
| 40 TOTAL OBSERVATIONS |
| 4 CROSS-SECTIONS |
| 10 TIME-PERIODS |

DEPENDENT VARIABLE = C
```
POOLED CROSS-SECTION TIME-SERIES

POOLING BY OLS
USING PANEL-CORRECTED COVARIANCE MATRIX

LM TEST FOR CROSS-SECTION HETEROSKEDASTICITY 5.8261
CHI-SQUARE WITH 3 D.F. P-VALUE= 0.12039

BREUSCH-PAGAN LM TEST FOR DIAGONAL COVARIANCE MATRIX 25.240
CHI-SQUARE WITH 6 D.F. P-VALUE= 0.00031

R-SQUARE = 0.7147
VARIANCE OF THE ESTIMATE-SIGMA**2 = 48.394
STANDARD ERROR OF THE ESTIMATE-SIGMA = 6.9566
SUM OF SQUARED ERRORS-SSE= 1839.0
MEAN OF DEPENDENT VARIABLE = 39.836
LOG OF THE LIKELIHOOD FUNCTION = -133.319

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
 NAME COEFFICIENT ERROR 38 DF P-VALUE CORR. COEFFICIENT AT MEANS
 Q 1.1316 0.1042 10.86 0.000 0.870 0.8454 0.8146
CONSTANT 7.3852 2.998 2.464 0.018 0.371 0.0000 0.1854

DURBIN-WATSON = 0.6458 VON NEUMANN RATIO = 0.6623 RHO = 0.63342
RESIDUAL SUM = 0.24869E-13 RESIDUAL VARIANCE = 48.394
SUM OF ABSOLUTE ERRORS= 228.79
R-SQUARE BETWEEN OBSERVED AND PREDICTED = 0.7147
RUNS TEST: 7 RUNS, 18 POS, 0 ZERO, 22 NEG NORMAL STATISTIC = -4.4668

|_* Pooling with cross-section heteroskedasticity,
|_* contemporaneous cross-section correlation and AR1 errors
|POOL C Q / NCROSS=4 FULL DN NOMULSIGSQ
POOLED CROSS-SECTION TIME-SERIES ESTIMATION
 40 TOTAL OBSERVATIONS
 4 CROSS-SECTIONS
 10 TIME-PERIODS

DEPENDENT VARIABLE = C
 THE DN OPTION IS IN EFFECT

MODEL ASSUMPTIONS:
 DIFFERENT ESTIMATED RHO FOR EACH CROSS-SECTION
 FULL PHI MATRIX - CROSS-SECTION CORRELATION

OLS COEFFICIENTS
 1.1316 7.3852

RHO VECTOR
 0.53953 0.45388E-02 0.94290 0.70678

SAME ESTIMATED RHO FOR ALL CROSS-SECTIONS = 0.63342

VARIANCES (DIAGONAL OF PHI MATRIX)
 33.206 16.460 9.0686 36.046

PHI MATRIX
 33.206
 1.1912 16.460
-2.2770 -5.1726 9.0686
-25.487 -7.6641 0.68614 36.046

BUSE [1973] R-SQUARE = 0.9260 BUSE RAW-MOMENT R-SQUARE = 0.9920
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.99598
POOLED CROSS-SECTION TIME-SERIES

STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.99799
SUM OF SQUARED ERRORS-SSE= 39.839
MEAN OF DEPENDENT VARIABLE = 39.836
LOG OF THE LIKELIHOOD FUNCTION = -112.331

ASYMPTOTIC

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>1.1658</td>
<td>0.5221E-01</td>
<td>22.33</td>
<td>0.000 0.964 0.8710 0.8392</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>7.4442</td>
<td>1.742</td>
<td>4.273</td>
<td>0.000 0.570 0.0000 0.1869</td>
</tr>
</tbody>
</table>

* Create cross-section dummy variables.
_* Set the number of cross-sections
MATRIX CSDUM=SEAS(40,-NC)
_* Set the number of time periods
_GEN1 NT=10
_* Generate an index for each cross-section
_GENR CSINDEX=SUM(SEAS(NT))
_* Generate a repeating time index for the 10 observations
_GENR TINDEX=TIME(0)-NT*(CSINDEX-1)

_* Estimation with cross-section dummy variables
_POOL C Q CSDUM / NCROSS=4 NOCONSTANT FULL DN NOMULSIGSQ
POOLED CROSS-SECTION TIME-SERIES ESTIMATION
40 TOTAL OBSERVATIONS
4 CROSS-SECTIONS
10 TIME-PERIODS

DEPENDENT VARIABLE = C
THE DN OPTION IS IN EFFECT

MODEL ASSUMPTIONS:
DIFFERENT ESTIMATED RHO FOR EACH CROSS-SECTION
FULL PHI MATRIX - CROSS-SECTION CORRELATION

OLS COEFFICIENTS
1.1190 2.3150 10.110 2.3854 16.171

RHO VECTOR
-0.36486 -0.23682 -0.76528E-01 -0.50981

SAME ESTIMATED RHO FOR ALL CROSS-SECTIONS = -0.33758

VARIANCES (DIAGONAL OF PHI MATRIX)
12.536 13.099 5.5972 11.077

PHI MATRIX
12.536
 0.80966 13.099
-2.8281 -1.1276 5.5972
-8.1934 -0.80424 0.60875 11.077

BUSE [1973] R-SQUARE = 0.9608 BUSE RAW-MOMENT R-SQUARE = 0.9988
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.99771
STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.99885
SUM OF SQUARED ERRORS-SSE= 39.908
MEAN OF DEPENDENT VARIABLE = 39.908
LOG OF THE LIKELIHOOD FUNCTION = -98.8112

ASYMPTOTIC

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>1.1658</td>
<td>0.5221E-01</td>
<td>22.33</td>
<td>0.000 0.964 0.8710 0.8392</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>7.4442</td>
<td>1.742</td>
<td>4.273</td>
<td>0.000 0.570 0.0000 0.1869</td>
</tr>
</tbody>
</table>
The final estimation includes a set of cross-section dummy variables in the matrix variable *CSDUM*. This permits different cross-section intercepts. The **NOCONSTANT** option is specified to avoid the dummy variable trap. The estimation output shows that the individual intercepts are 3.76, 11.44, 3.69 and 17.64 for industries 1, 2, 3 and 4 respectively.
25. PROBIT AND LOGIT REGRESSION

"The deliverance of the saints must take place some time before 1914."
Charles Taze Russell
American religious leader, 1910

"The deliverance of the saints must take place some time after 1914."
Charles Taze Russell
American religious leader, 1923

The probit and logit models can be used for the analysis of binary choice models where the dependent variable Y_t is a 0−1 dummy variable. Some references are Greene [2003, Chapter 21]; Wooldridge [2006, Chapter 17]; Chow [1983, Chapter 8]; Griffiths, Hill and Judge [1993, Chapter 23]; Hanushek and Jackson [1977, Chapter 7]; Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 18]; Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 19]; Maddala [1977, Chapter 9-7]; Maddala [1983, Chapter 2]; and Pindyck and Rubinfeld [1998, Chapter 11]. Examples of probit and logit estimation using SHAZAM can be found in, respectively, White [1975] and Cameron and White [1986].

The estimation algorithms implemented with the PROBIT and LOGIT commands use fast iterative methods which usually converge in 4 or 5 iterations. The maximum likelihood estimation routines are based on computer programs originally written by John Cragg. SHAZAM TEST commands can be used following estimation. RESTRICT commands are not permitted.

A "utility index" I is defined for individual t as $I_t = X_t' \beta$.

The choice probabilities must lie between zero and one. However, the index I is in the range $(-\infty, +\infty)$. This can be translated to a 0−1 range by the use of a cumulative distribution function so that $Pr \ obs (Y_t = 1) = P_t = F(I_t) = F(X_t' \beta)$. Two alternative choices for F are:

The probit model: $F(X_t' \beta) = \int_{-\infty}^{I_t} \frac{1}{\sqrt{2\pi}} \exp(-t^2/2)dt$

The logit model: $F(X_t' \beta) = \frac{1}{1 + \exp(-X_t' \beta)}$
Maximum Likelihood Estimation

With the assumption of independent observations the log-likelihood function for a sample of N observations is:

\[
L(\beta) = \sum_{t=1}^{N} \{Y_t \ln[F(X_t' \beta)] + (1 - Y_t) \ln[1 - F(X_t' \beta)]\}
\]

The estimate of the asymptotic covariance matrix for the maximum likelihood estimates \(\hat{\beta}\) is computed as the inverse of the negative of the matrix of second derivatives of the log-likelihood function.

A test of the null hypothesis that all the slope coefficients are zero can be carried out using a likelihood ratio test. If S is the number of successes (\(Y_t=1\)) observed in N observations, then for both the probit and logit models, the maximum value of the log likelihood function under the null hypothesis is:

\[
L(0) = S \ln\left(\frac{S}{N}\right) + (N - S) \ln\left(\frac{N - S}{N}\right)
\]

The above statistic is printed on the SHAZAM output as \text{LOG-LIKELIHOOD FUNCTION WITH CONSTANT TERM ONLY} or as \text{LOG-LIKELIHOOD (0)}. The \text{BINOMIAL ESTIMATE} is \(S/N\). If all coefficients except the intercept are zero the \text{LIKELIHOOD RATIO TEST} statistic \(2[L(\hat{\beta}) - L(0)]\) has an asymptotic \(\chi^2_{(k-1)}\) distribution.

Interpreting the Results

Predicted probabilities are computed as \(\hat{Y}_t = \hat{P}_t = F(X_t' \hat{\beta})\).

The coefficients tell the effect of a change in the independent variable on the utility index. The impact of a unit increase in an explanatory variable on the choice probability is obtained by estimating the marginal effects as:

\[
\frac{\partial \hat{P}_t}{\partial X_{kt}} = \text{scale} \ \hat{\beta}_k \quad \text{where}
\]

for the probit model: \(\text{scale} = f(X_t' \hat{\beta})\) \(f()\) is the normal density function
and for the logit model:

$$\text{scale} = \frac{\exp(-X_t'\hat{\beta})}{[1 + \exp(-X_t'\hat{\beta})]^2}$$

For reporting the marginal effects, the scale factor is evaluated at the sample means of the variables.

Suppose the k^{th} explanatory variable is a 0–1 dummy variable. The change in the probability of a success ($Y=1$) that results from changing X_k from zero to one, holding all other variables at some fixed values, denoted by X^*, is given by the difference:

$$\Pr Y = 1 | X_k = 1, X^* - \Pr Y = 1 | X_k = 0, X^*$$

Values must be set for X^*. An approach is to set values to represent a "typical case". A "typical case" can be defined by setting all dummy variables to their modal values and all other variables to their mean values.

The SHAZAM output reports marginal effects for all dummy explanatory variables in the section labelled PROBABILITIES FOR A TYPICAL CASE. For a dummy explanatory variable X_k, the column labelled $X=0$ reports the probability:

$$\Pr Y = 1 | X_k = 0, X^*$$

and the column labelled $X=1$ gives the probability:

$$\Pr Y = 1 | X_k = 1, X^*$$

The final column labelled MARGINAL EFFECT reports the difference between the two probabilities. The values used for X^* are reported in the column labelled CASE VALUES. These are set as the modal values for dummy variables and sample averages for other variables.

The elasticity gives the percentage change in the choice probability in response to a percentage change in the explanatory variable. For the k^{th} coefficient this is estimated as:

$$E_{kt} = \left(\frac{\partial \hat{P}_t}{\partial X_{kt}} \right) \frac{X_{kt}}{F(X_t'\hat{\beta})}$$
Since the elasticity is different for every observation it is often reported at the mean values of \(X \). On the SHAZAM output the \text{ELASTICITY AT MEANS} is computed as:

\[
\bar{E}_k = \left(\frac{\partial \hat{P}}{\partial X_k} \right) \frac{\bar{X}_k}{F(X \hat{\beta})}
\]

Alternatively, Hensher and Johnson [1981, Eq. 3.44] propose the \text{WEIGHTED AGGREGATE ELASTICITY} calculated as:

\[
\bar{E}_k^W = \frac{\sum_{t=1}^{N} \hat{P}_t E_{kt}}{\sum_{t=1}^{N} \hat{P}_t}
\]

\textit{Measuring Goodness of Fit}

Various researchers have proposed different ways of computing \(R^2 \) measures for the probit and logit models and the practitioner must decide which statistic is the most appealing. The SHAZAM output prints a variety of these statistics to choose from.

<table>
<thead>
<tr>
<th>Goodness-of-fit measure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{ESTRELLA R-SQUARE}</td>
<td>(1 - \left(\frac{L(\hat{\beta})}{L(0)} \right)^{(-2/N)})</td>
</tr>
<tr>
<td>\text{MADDALA R-SQUARE}</td>
<td>(1 - \exp\left{ \frac{2[L(0) - L(\hat{\beta})]}{N} \right}) \text{Maddala [1983, Eq.2.44]}</td>
</tr>
<tr>
<td>\text{CRAGG-UHLER R-SQUARE}</td>
<td>(\frac{1 - \exp\left{ \frac{2[L(0) - L(\hat{\beta})]}{N} \right}}{1 - \exp{ 2L(0)/N }}) \text{Cragg &Uhler [1970, p. 400]}</td>
</tr>
<tr>
<td>\text{MCFADDEN R-SQUARE}</td>
<td>(1 - \frac{\hat{\beta}}{L(0)}) \text{McFadden [1974]}</td>
</tr>
<tr>
<td>\text{CHOW R-SQUARE}</td>
<td>(1 - \frac{\sum_{t=1}^{N} (Y_t - \hat{Y}t)^2}{\sum{t=1}^{N} (Y_t - \bar{Y})^2}) \text{Chow [1983, p. 262, Eq. 47]}</td>
</tr>
</tbody>
</table>

Denote \(R^2 \) as the McFadden goodness-of-fit measure. Hensher and Johnson [1981, p. 52] recommend adjusting this for degrees of freedom and on the SHAZAM output the statistic \text{ADJUSTED FOR DEGREES OF FREEDOM} is computed as:
\[1 - \frac{L(\hat{\beta})/(N - K)}{L(0)/(N - 1)} \]

An alternative to the likelihood ratio test is proposed in Chow [1983, p. 263]. Under the null hypothesis that all the slope coefficients are zero the statistic:

\[\frac{R^2/(K - 1)}{(1 - R^2)/K} \]

is approximately F distributed with \((K - 1, K)\) degrees of freedom.

A summary of predictive ability is the 2 x 2 prediction success table reported as:

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(N_{11})</td>
<td>(N_{12})</td>
</tr>
<tr>
<td>1</td>
<td>(N_{21})</td>
<td>(N_{22})</td>
</tr>
</tbody>
</table>

The decision rule is to predict \(Y_t = 0\) when \(\hat{p}_t < 0.5\) (equivalent to \(\hat{I}_t < 0\)) and predict \(Y_t = 1\) when \(\hat{p}_t \geq 0.5\). The table tells the numeric counts of hits and misses using this decision rule.

A naive model predicts 0 if most observations are 0 and predicts 1 if most observations are 1. The naive model percentage of right predictions is then \(S/N\) if \(S > N/2\) and \((N - S)/N\) otherwise.

Other calculated statistics are:

- **Expected observations at 0**
 \[\sum_{t=1}^{N} (1 - \hat{p}_t) \]

- **Expected observations at 1**
 \[\sum_{t=1}^{N} \hat{p}_t \]

- **Sum of squared residuals**
 \[\sum_{t=1}^{N} (Y_t - \hat{Y}_t)^2 \]

- **Weighted sum of squared residuals**
 \[\sum_{t=1}^{N} \frac{(Y_t - \hat{Y}_t)^2}{\hat{Y}_t(1 - \hat{Y}_t)} \]

A discussion on the interpretation of these statistics in the context of binary choice models is given in Amemiya [1981, pp. 1502-7].
Hensher and Johnson [1981, p.54] provide a more enhanced version of the prediction success table where the N_{ij} elements are defined somewhat differently as:

\[
N_{11} = \sum_{t=1}^{N} (1 - Y_t)(1 - \hat{P}_t); \quad N_{12} = \sum_{t=1}^{N} (1 - Y_t)\hat{P}_t; \quad N_{21} = \sum_{t=1}^{N} Y_t(1 - \hat{P}_t) \quad \text{and} \quad N_{22} = \sum_{t=1}^{N} Y_t\hat{P}_t
\]

The HENSHER-JOHNSON PREDICTION SUCCESS TABLE is then obtained as:

<table>
<thead>
<tr>
<th>ACTUAL</th>
<th>PREDICTED</th>
<th>CHOICE</th>
<th>OBSERVED COUNT</th>
<th>OBSERVED SHARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N_{11}</td>
<td>N_{12}</td>
<td>$N_1.$</td>
<td>$N_1./N_{..}$</td>
</tr>
<tr>
<td>1</td>
<td>N_{21}</td>
<td>N_{22}</td>
<td>$N_2.$</td>
<td>$N_2./N_{..}$</td>
</tr>
<tr>
<td></td>
<td>$N_{.1}$</td>
<td>$N_{.2}$</td>
<td>$N_{..}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$N_{11}/N_{.1}$</td>
<td>$N_{22}/N_{.2}$</td>
<td>$(N_{11}+N_{22})/N_{..}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{N_{11}}{N_{..}} - \frac{N_{.1}}{N_{..}}$</td>
<td>$\frac{N_{22}}{N_{..}} - \frac{N_{.2}}{N_{..}}$</td>
<td>$\sum_{i=1}^{2} \frac{N_{ii}}{N_{..}} - \left(\frac{N_{.i}}{N_{..}}\right)^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(N_{.1}-N_{1.})/N_{..}$</td>
<td>$(N_{.2}-N_{2.})/N_{..}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The NORMALIZED SUCCESS INDEX is the sum of the SUCCESS INDEXES weighted by the PROPORTIONAL ERROR.

PROBIT AND LOGIT COMMAND OPTIONS

In general, the formats of the PROBIT and LOGIT commands are:

PROBIT depvar indeps / options

LOGIT depvar indeps / options
where \emph{depvar} is the dependent variable, \emph{indeps} is a list of independent variables, and \emph{options} is a list of desired options. Options as defined for the \texttt{OLS} command that are available are:

\begin{itemize}
 \item \texttt{MAX, NOCONSTANT, NONORM, PCOR, BEG=, END= COEF=, COV=, STDERR=, TRATIO=} and \texttt{WEIGHT=}
\end{itemize}

Additional options available on the \texttt{PROBIT} and \texttt{LOGIT} commands are:

\begin{itemize}
 \item \texttt{DUMP} \texttt{DUMPS} the matrix of second derivatives and possibly some other output that the user normally does not want to see.
 \item \texttt{LIST} \texttt{LISTs}, for each observation, the value of the index I, the predicted and observed values of the dependent variable, and a plot of the predicted values. It will also print the residual statistics obtained with \texttt{RSTAT}. Note that the predicted values, rather than the residuals, are plotted with the \texttt{LIST} option in the probit and logit models since a plot of the residuals is less useful.
 \item \texttt{LOG} Computes elasticities at the mean and weighted aggregate elasticities assuming that the explanatory variables are \texttt{LOG}-transformed variables.
 \item \texttt{PCOV} Prints the estimated asymptotic \texttt{COV}ariance matrix of the coefficients. The matrix is the inverse of the negative of the matrix of second derivatives of the log-likelihood function.
 \item \texttt{RSTAT} Prints \texttt{Residual STATististics}, but no listing of the observations. While a variety of statistics are printed (for example, Durbin-Watson), they should be used with care since they may not be valid for the probit and logit models.
 \item \texttt{CONV=} Sets the \texttt{CONVergence} criterion for the log-likelihood function. Let \(L^{(i)} \) be the value of the log-likelihood function at iteration \(i \). The estimation converges when \((L^{(i)} - L^{(i-1)}) / |L^{(i)}| < \delta \). The value for \(\delta \) is set with \texttt{CONV=} and the default is 0.001.
 \item \texttt{IMR=} Saves the computed inverse Mill’s ratio (or hazard rate) in the variable specified (only for use with \texttt{PROBIT}). This is estimated as \(I(X_i' \hat{\beta}) / F(X_i' \hat{\beta}) \) if \(Y_i = 1 \) where \(f() \) is the standard normal density function and \(F() \) is the standard normal cumulative distribution function. When \(Y_i = 0 \) SHAZAM computes the negative of the hazard rate as \(I(X_i' \hat{\beta}) / F(X_i' \hat{\beta}) - 1 \). The ratio is discussed in Heckman [1979, p.156] and
\end{itemize}
applications can be found in Maddala [1983, Chapter 8-9] and Berndt [1991, Chapter 11]. An example of the use of the IMR= option is given for a two-stage estimation procedure at the end of this chapter. In the first stage a probit model is specified and estimated. In the second stage the inverse Mill's ratio is included as a regressor in an OLS estimation with a selected sample. This is intended as a correction for sample selection bias.

INDEX= Saves the computed INDEX in the variable specified.

ITER= Sets the maximum number of ITERations allowed. The default is 25.

PITER= Specifies the frequency with which the ITERations will be Printed. The default is PITER=1. To prevent any information from being printed PITER=0 must be specified.

PREDICT= Saves the PREDICTed probabilities in the variable specified.

If the WEIGHT= option is used, the method used follows that described for the REPLICATE option in OLS.

The temporary variables available after the PROBIT or LOGIT commands are:

$ERR Error code
$K Number of coefficients
$LLF Log of the Likelihood Function
$N Number of observations
$VAL1 Scale factor used to calculate marginal effects

EXAMPLES

Logit Model Estimation

This example shows the estimation results from the logit procedure using the voting data set from Pindyck and Rubinfeld [1998, Table 11.8, p. 332]. The variable YESVM is equal to 1 if the individual voted yes and 0 if the individual voted no.
LOGIT YESVM PUB12 PUB34 PUB5 PRIV YEARS SCHOOL LOGINC PTCON / PTER=0

LOGIT ANALYSIS DEPENDENT VARIABLE = YESVM CHOICES = 2

95. TOTAL OBSERVATIONS
59. OBSERVATIONS AT ONE
36. OBSERVATIONS AT ZERO
25 MAXIMUM ITERATIONS
CONVERGENCE TOLERANCE = 0.00100

LOG OF LIKELIHOOD WITH CONSTANT TERM ONLY = -63.037
BINOMIAL ESTIMATE = 0.6211

ITERATION 5 LOG OF LIKELIHOOD FUNCTION = -53.303
ITERATION 5 ESTIMATES
0.58364 1.1261 0.52606 -0.34142 -0.26127E-01 2.6250
2.1872 -2.3945 -5.2014

ASYMPTOTIC WEIGHTED
VARIABLE ESTIMATED STANDARD T-RATIO ELASTICITY AGGREGATE
NAME COEFFICIENT ERROR AT MEANS ELASTICITY

PUB12 0.58364 0.68778 0.84858 0.93986E-01 0.91051E-01
PUB34 1.1261 0.76820 1.4659 0.11827 0.96460E-01
PUB5 0.52606 1.2693 0.41445 0.73664E-02 0.69375E-02
PRIV -0.34142 0.76299 -0.43605 -0.11952E-01 -0.12037E-01
YEARS -0.26127E-01 0.26934E-01 0.97006 0.73996E-01 0.68592E-01
SCHOOL 2.6250 1.4101 1.8616 0.10108 0.28999E-01
LOGINC 2.1872 0.78781 2.7763 7.2529 6.7561
PTCON -2.3945 1.0813 -2.2145 -5.5262 -5.1745
CONSTANT -5.2014 7.5503 -0.68890 -1.7298 -1.6137

SCALE FACTOR = 0.22197

VARIABLE MARGINAL ----- PROBABILITIES FOR A TYPICAL CASE -----
NAME EFFECT CASE X=0 X=1 MARGINAL
VALUES EFFECT

PUB12 0.12955 0.0000 0.44231 0.58706 0.14476
PUB34 0.24996 0.0000 0.44231 0.70978 0.26747
PUB5 0.11677 0.0000 0.44231 0.57304 0.13073
PRIV -0.75785E-01 0.0000 0.44231 0.36049 -0.81814E-01
YEARS -0.57995E-02 8.5158
SCHOOL 0.58267 0.0000 0.44231 0.91631 0.47400
LOGINC 0.48548 9.9711
PTCON -0.53150 6.9395

LOG-LIKELIHOOD FUNCTION = -53.303
LOG-LIKELIHOOD(0) = -63.037
LIKELIHOOD RATIO TEST = 19.4681 WITH 8 D.F. P-VALUE = 0.01255

ESTRELLA R-SQUARE 0.19956
MADDALA R-SQUARE 0.18529
CRAGG-UHLER R-SQUARE 0.25218
MCFADDEN R-SQUARE 0.15442

ADJUSTED FOR DEGREES OF FREEDOM 0.75759E-01
APPROXIMATELY F-DISTRIBUTED 0.20544 WITH 8 AND 9 D.F.
CHOW R-SQUARE 0.17197

PREDICTION SUCCESS TABLE
ACTUAL
0 1
0 18. 7.
PREDICTED 1 18. 52.
For the school budget voting study, the variable \textit{SCHOOL} is a dummy variable equal to one if the individual is employed as a school teacher and zero otherwise. A question to consider is: Are school teachers more likely to vote yes in the school budget referendum, holding all other variables fixed (that is, relative to individuals that are not school teachers but otherwise have similar characteristics)? The positive estimated coefficient on the school dummy variable indicates a higher probability of a yes vote for a school teacher.

To get an estimate of the magnitude of the effect, set the explanatory variables to values that represent a "typical voter" in the sample. The definitions of the variables in the data set can be reviewed. The dummy variables \textit{PUB12}, \textit{PUB34}, \textit{PUB5} and \textit{PRIV} all have a mode of zero. This describes a voter with no children in public or private school. The "typical case" values for the other explanatory variables (\textit{YEARS}, \textit{LOGINC} and \textit{PTCON}) are the sample means.

An individual that is not a school teacher, with "typical" characteristics on all variables in the model, has a probability of a yes vote of 0.44231. If the individual is a school teacher the probability increases to 0.91631. The marginal effect is the difference 0.474.

Note that the marginal effect obtained using the less precise method of taking the partial derivative with respect to the school dummy variable was calculated to be 0.58267.
Probit Model Estimation

The SHAZAM output given below uses data from T. Mroz included in Berndt [1991, Chapter 11]. The labor force participation for married women is given by the 0-1 dummy variable \(LFP \). The explanatory variables measure various attributes of the woman and her family. The wage rate \(WW \) is observed only for the working women in the sample. To obtain a wage rate estimate for the entire sample a wage determination equation is first estimated and used for extrapolation purposes. The \texttt{PROBIT} command is then used to estimate a model of labor force participation that predicts the probability that an individual will join the labor force.

<table>
<thead>
<tr>
<th>SAMPLE 1 753</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ (MROZ) LFP WHRS KL6 K618 WA WE WW RFWG HHRS HA HE HW FAMINC &</td>
</tr>
<tr>
<td>MTR WMED WFED UN CIT AX / SKIPLINES=1</td>
</tr>
<tr>
<td>UNIT 88 IS NOW ASSIGNED TO: MROZ</td>
</tr>
<tr>
<td>19 VARIABLES AND 753 OBSERVATIONS STARTING AT OBS 1</td>
</tr>
<tr>
<td>* Analyze wife's property income</td>
</tr>
<tr>
<td>GENR PRIN=(FAMINC-WW*WHRS)/1000</td>
</tr>
<tr>
<td>DIM LWW 753</td>
</tr>
<tr>
<td>GENR WA2=WA*WA</td>
</tr>
<tr>
<td>* Restrict the sample to those who work</td>
</tr>
<tr>
<td>SAMPLE 1 428</td>
</tr>
<tr>
<td>GENR LWW=LOG(WW)</td>
</tr>
<tr>
<td>* Estimate a wage determination equation</td>
</tr>
<tr>
<td>?OLS LWW WA WA2 WE CIT AX</td>
</tr>
<tr>
<td>* Estimate a predicted wage for non-workers</td>
</tr>
<tr>
<td>?FC / PREDICT=LWW BEG=429 END=753</td>
</tr>
<tr>
<td>* Probit Estimation</td>
</tr>
<tr>
<td>SAMPLE 1 753</td>
</tr>
<tr>
<td>PROBIT LFP LWW PRIN KL6 K618 WA WE UN CIT / PITER=0</td>
</tr>
</tbody>
</table>

PROBIT ANALYSIS DEPENDENT VARIABLE =LFP CHOICES = 2

753. TOTAL OBSERVATIONS
428. OBSERVATIONS AT ONE
325. OBSERVATIONS AT ZERO
25 MAXIMUM ITERATIONS
CONVERGENCE TOLERANCE = .00100

LOG OF LIKELIHOOD WITH CONSTANT TERM ONLY = -514.87
BINOMIAL ESTIMATE = .5684

ITERATION 3 LOG OF LIKELIHOOD FUNCTION = -450.72
ITERATION 3 ESTIMATES

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>ELASTICITY AT MEANS</th>
<th>ELASTICITY AGGREGATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWW</td>
<td>.23998</td>
<td>.93507E-01</td>
<td>2.5664</td>
<td>.18017</td>
<td>.15423</td>
</tr>
<tr>
<td>PRIN</td>
<td>-.21238E-01</td>
<td>.46991E-02</td>
<td>-4.5195</td>
<td>-.29063</td>
<td>-.25371</td>
</tr>
<tr>
<td>KL6</td>
<td>-.87938</td>
<td>11450</td>
<td>-7.6799</td>
<td>-.14212</td>
<td>-.11515</td>
</tr>
<tr>
<td>K618</td>
<td>-.32061E-01</td>
<td>.40672E-01</td>
<td>-.78829</td>
<td>-.29497E-01</td>
<td>-.25672E-01</td>
</tr>
<tr>
<td>WA</td>
<td>-.34542E-01</td>
<td>.76642E-02</td>
<td>-4.5069</td>
<td>-.99895</td>
<td>-.88764</td>
</tr>
<tr>
<td>WE</td>
<td>.13204</td>
<td>.25962E-01</td>
<td>5.0869</td>
<td>.54989E-01</td>
<td>.54989E-01</td>
</tr>
<tr>
<td>UN</td>
<td>-.10666E-01</td>
<td>.15955E-01</td>
<td>-.66851</td>
<td>-.62531E-01</td>
<td>-.54989E-01</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>EFFECT</td>
<td>CASE VALUES</td>
<td>MARGINAL EFFECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWW</td>
<td>0.93991E-01</td>
<td>1.1043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRIN</td>
<td>-0.83180E-02</td>
<td>20.129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KL6</td>
<td>-0.34442</td>
<td>0.23772</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K618</td>
<td>-0.12557E-01</td>
<td>1.3533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA</td>
<td>-0.13529E-01</td>
<td>42.538</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE</td>
<td>0.51716E-01</td>
<td>12.287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td>-0.41774E-02</td>
<td>8.6235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIT</td>
<td>0.44909E-02</td>
<td>1.0000</td>
<td>0.57321</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD FUNCTION = -450.72
LOG-LIKELIHOOD(0) = -514.87
LIKELIHOOD RATIO TEST = 128.306 WITH 8 D.F. P-VALUE= 0.00000

ESTRELLA R-SQUARE = 0.16638
MADDALA R-SQUARE = 0.15667
CRAGG-UHLER R-SQUARE = 0.21022
MCFADDEN R-SQUARE = 0.12460

CHOW R-SQUARE = 0.15809

PREDICTION SUCCESS TABLE

<table>
<thead>
<tr>
<th>ACTUAL</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREDICTED 0</td>
<td>163.</td>
<td>79.</td>
</tr>
<tr>
<td>PREDICTED 1</td>
<td>162.</td>
<td>349.</td>
</tr>
</tbody>
</table>

NUMBER OF RIGHT PREDICTIONS = 512.
PERCENTAGE OF RIGHT PREDICTIONS = 0.67995
NAIVE MODEL PERCENTAGE OF RIGHT PREDICTIONS = 0.56839

EXPECTED OBSERVATIONS AT 0 = 323.5 OBSERVED = 325.0
EXPECTED OBSERVATIONS AT 1 = 429.5 OBSERVED = 428.0
SUM OF SQUARED "RESIDUALS" = 155.52
WEIGHTED SUM OF SQUARED "RESIDUALS" = 746.36

HENSHER-JOHNSON PREDICTION SUCCESS TABLE

<table>
<thead>
<tr>
<th>ACTUAL</th>
<th>PREDICTED 0</th>
<th>168.692</th>
<th>156.308</th>
<th>325.000</th>
<th>.432</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PREDICTED 1</td>
<td>154.761</td>
<td>273.239</td>
<td>428.000</td>
<td>.568</td>
</tr>
<tr>
<td></td>
<td>OBSERVED COUNT</td>
<td>323.454</td>
<td>429.546</td>
<td>753.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>OBSERVED SHARE</td>
<td>.430</td>
<td>.570</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROP. SUCCESSFUL</td>
<td>.522</td>
<td>.636</td>
<td>.587</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUCCESS INDEX</td>
<td>.092</td>
<td>.066</td>
<td>.077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROPORTIONAL ERROR</td>
<td>-.002</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NORMALIZED SUCCESS INDEX</td>
<td>.157</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
26. ROBUST ESTIMATION

"39. This appears to be the first uninteresting number, which of course makes it an especially interesting number, because it is the smallest number to have the property of being uninteresting. It is therefore also the first number to be simultaneously interesting and uninteresting."

David Wells, 1986
The Penguin Dictionary of Curious and Interesting Numbers

SHAZAM can perform the robust estimation methods described in Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 22]. As a prelude to this chapter, the OLS command can be used to obtain regression diagnostics such as tests for normal errors and tests for detecting influential observations (see the OLS command options DFBETAS, GF, INFLUENCE and RSTAT). The ROBUST command provides a number of alternative robust estimation methods. These methods give coefficient estimators that do not necessarily follow a t-distribution, so hypothesis testing must be done carefully. Often the distribution is unknown.

ESTIMATION UNDER MULTIVARIATE t ERRORS

The multivariate-t regression model specifies an error distribution with fatter tails than the normal distribution. Two cases to consider are one where the residuals are independent and one where the residuals are uncorrelated but not independent. For the uncorrelated but not independent error case (specified with the UNCOR option on the ROBUST command) the coefficient estimates are identical to OLS estimates but the covariance matrix is estimated as:

$$
\frac{v \hat{\sigma}^2}{v-2} (X'X)^{-1}
$$

where

$$
\hat{\sigma}^2 = \frac{e'e}{N}
$$

and v is the degrees of freedom specified with the MULTIT= option and is only defined for $v > 2$.

The independent error case is discussed in Kelejian and Prucha [1985] and Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 22.3].
ESTIMATION USING REGRESSION QUANTILES

The method of regression quantiles is described in Koenker and Bassett [1978] and in Koenker and D'Orey [1987]. For a given a value of \(\theta \) such that \(0 < \theta < 1 \) the \(\theta \)th sample regression quantile is found by minimizing the function:

\[
\sum_{(t: Y_t \geq X'_t \beta)} \theta |Y_t - X'_t \beta| + \sum_{(t: Y_t < X'_t \beta)} (1 - \theta) |Y_t - X'_t \beta|
\]

The solution to the minimization problem is the estimator \(\hat{\beta}^*(\theta) \). The value of the minimized function is printed on the SHAZAM output as OBJECTIVE FUNCTION. The output also includes a statistic labelled EMPIRICAL QUANTILE FUNCTION AT MEANS which is computed as the predicted value at the mean values of the independent variables.

Least Absolute Error Estimation

When \(\theta = 0.5 \) the objective is to find the set of coefficients that minimizes the sum of absolute errors:

\[
\sum_{t=1}^{N} |Y_t - X'_t \beta|
\]

The estimator \(\hat{\beta}^*(0.5) \) is the least absolute errors (LAE) estimator, also known as minimum absolute deviations (MAD), least absolute values (LAV) or the L1 estimator. The covariance matrix of the LAE estimator is estimated as:

\[
[2 \hat{f}(0)]^{-2} (X'X)^{-1}
\]

where \(\hat{f}(0) \) is the value of the density at the median and an estimator is:

\[
\hat{f}(0) = \frac{2d}{N (e_{(m+d)} - e_{(m-d)})}
\]

where \(e_{(t)} \) are ordered residuals and \(m \approx N/2 \). The value of \(d \) can be specified with the DIFF= option on the ROBUST command.
Linear Functions of Regression Quantiles

An estimator that is a linear function of regression quantiles is given by:

\[
\hat{\beta}(\pi) = \sum_{i=1}^{M} \pi_i \hat{\beta}^*(\theta_i)
\]

where \(\pi = (\pi_1, \ldots, \pi_M)'\) is a symmetric weighting scheme. Alternative schemes described in Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 22.4.2] and implemented with the `ROBUST` command are:

<table>
<thead>
<tr>
<th>Estimator</th>
<th>ROBUST option</th>
<th>(\theta)</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five quantile</td>
<td>FIVEQUAN</td>
<td>(.1, .25, .5, .75, .9)</td>
<td>(.05, .25, .4, .25, .05)</td>
</tr>
<tr>
<td>Gastwirth</td>
<td>GASTWIRT</td>
<td>(.33, .5, .67)</td>
<td>(.3, .4, .3)</td>
</tr>
<tr>
<td>Tukey trimean</td>
<td>TUKEY</td>
<td>(.25, .5, .75)</td>
<td>(.25, .5, .25)</td>
</tr>
</tbody>
</table>

Another estimator is:

\[
\hat{\beta} = \frac{1}{M} \sum_{i=1}^{M} \hat{\beta}^*(\theta_i)
\]

where the \(\theta_i\) values are equally spaced. This rule is used by specifying the `THETAB=`, `THETAE=` and `THETAI=` options on the `ROBUST` command.

Trimmed Least Squares

The trimmed least squares method constructs the estimators \(\hat{\beta}^*(\alpha)\) and \(\hat{\beta}^*(1-\alpha)\) where \(\alpha\) is the desired trimming proportion \((0 < \alpha < 0.5)\). The value for \(\alpha\) is specified with the `TRIM=` option on the `ROBUST` command. The observations where \(Y_t - X'_i \hat{\beta}^*(\alpha) \leq 0\) or \(Y_t - X'_i \hat{\beta}^*(1-\alpha) \geq 0\) are discarded and OLS is then applied to the remaining observations to get the estimator \(\tilde{\beta}_\alpha\). The covariance matrix is estimated as:

\[
V(\tilde{\beta}_\alpha) = \hat{\sigma}^2(\alpha)(X'X)^{-1}
\]

where

\[
\hat{\sigma}^2(\alpha) = \frac{1}{(1 - 2\alpha)^2} \left(\frac{e'e}{N - K} + \alpha(c_1^2 + c_2^2) - \alpha^2 (c_1 + c_2)^2 \right)
\]

with

\[
c_1 = X' [\hat{\beta}^*(\alpha) - \tilde{\beta}_\alpha] \quad \text{and} \quad c_2 = X' [\hat{\beta}^*(1-\alpha) - \tilde{\beta}_\alpha]
\]
ROBUST COMMAND OPTIONS

In general, the format of the ROBUST command is:

```
ROBUST depvar indeps / options
```

where `depvar` is the dependent variable, `indeps` is a list of independent variables, and `options` is a list of options.

Options as defined for the OLS command that are available are:

- `GRAPH`, `LINGINV`, `LINGLOG`, `LIST`, `LOGINV`, `LOGLIN`, `LOGLOG`, `MAX`, `NOCONSTANT`, `PCOR`, `PCOV`, `RSTAT`, `BEG=`, `END=`, `COEF=`, `COV=`, `PREDICT=`, `RESID=`, `STDERR=` and `TRATIO=`

Additional options available on the ROBUST command are:

- `FIVEQUAN` Specifies the "five quantile estimator" as described above.
- `GASTWIRT` Specifies the Gastwirth weighting scheme for the regression quantile estimator as described above.
- `LAE` Specifies that least absolute error (LAE) estimation is desired. This is the default method. Also see the `DIFF=` option.
- `TUKEY` Specifies the Tukey trimean weighting scheme in computing regression quantiles as described above.
- `UNCOR` Used with the `MULTIT=` option described below to specify that the uncorrelated error model is requested. If this option is not used the independent error model is assumed.
- `CONV=` Used with the `MULTIT=` option described below to specify a convergence criterion \(\delta \) to stop the iterative procedure used to obtain the estimates. For \(S^{(i)} \) the sum of squared errors at iteration \(i \) the iterations will stop when:

\[
|S^{(i)} - S^{(i-1)}| < \delta
\]

The default is `CONV=0.01`.
DIFF= Specifies a value of \(d \) to use with the LAE and \(\text{THETA=} \) options and for methods that use linear functions of regression quantiles. The parameter \(d \) is the differential used when selecting ordered residuals to use in computing the covariance matrix (details are in Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 22.4]). The default value for \(d \) is \((N - K - 1)/6\) (rounded down to the nearest integer). However, the maximum permitted value for \(d \) is \(N \cdot \theta / 2 \) (rounded down to the nearest integer). Judge et al. [1988, p. 903-4] note that the covariance estimator is unlikely to be satisfactory for large \(K/N \).

If you specify \(\text{DIFF=} -1 \) the method of Bofinger [1975] and Siddiqui [1960] is used which gives:

\[
d = N^{(-1/5)} \left[\frac{4.5 \varphi(x)^4}{(2 x^2 + 1)^2} \right]^{(1/5)} \quad \text{where} \quad x = \Phi^{-1}(\theta)
\]

\(\varphi \) and \(\Phi^{-1} \) represent the standard normal density function and inverse of the standard normal cumulative distribution function respectively. In the above equation \(\theta \) is the quantile required so \(\theta = 0.5 \) in the case of the LAE model. If \(\text{DIFF=} -2 \) SHAZAM will use the method suggested by Hall and Sheather [1988] and Siddiqui [1960]:

\[
d = N^{(-1/3)} z_{\alpha}^{2/3} \left[\frac{1.5 \varphi(x)^2}{(2 x^2 + 1)} \right]^{(1/3)} \quad \text{where} \quad x = \Phi^{-1}(\theta)
\]

and \(z_{\alpha} \) is the \(\alpha/2 \) critical value from the normal distribution. SHAZAM uses \(\alpha = 0.05 \) and therefore \(z_{0.05} = 1.96 \).

ITER= Used with the \(\text{MULTIT=} \) option described below to specify the maximum number of iterations allowed in the iterative procedure used to obtain the estimates. The default is \(\text{ITER=} 10 \).

MULTIT= Specifies the degrees of freedom parameter to be used for the multivariate-\(t \) error distribution. See also the \(\text{UNCOR} \), \(\text{CONV=} \), and \(\text{ITER=} \) options which can be used with the \(\text{MULTIT=} \) option.

THETA= Specifies a single value of \(\theta \) to use for the regression quantile method.
THETAB=, THETAЕ=, THETAΙ= Specifies beginning (THETAB=), ending (THETAЕ=), and increments (THETAΙ=) to be used for θ. A sequence of regression quantile estimates is generated and coefficient estimates are obtained as the average (equal weights). If these options are specified the THETA= option is ignored.

TRIM= Specifies the value of the TRIMming proportion α to use for the trimmed least squares estimation method. The value specified for α should be between 0 and 0.5. A listing of the observation numbers for the deleted observations is printed unless the SET NOWARN command has been used.

Only one estimation method is permitted on any ROBUST command. The default is the LAE method. Note that calculations of R² are not well defined in these models. Users may prefer to use the R² measure that is reported with the RSTAT option.

EXAMPLES

Examples of the use of the ROBUST command are provided in Chapter 22 of the Judge Handbook. An example of the ROBUST command to obtain the LAE estimates for the Theil textile data set is:

```
| ROBUST CONSUME INCOME PRICE / LAE RSTAT
LEAST ABSOLUTE ERRORS REGRESSION
OBJECTIVE FUNCTION = 35.244
NUMBER OF SIMPLEX ITERATIONS = 5.0000
EMPIRICAL QUANTILE FUNCTION AT MEANS = 136.24
SUM OF ABSOLUTE ERRORS = 70.487
  USING DIFF= 2 FOR COVARIANCE CALCULATIONS
VARIANCE OF THE ESTIMATE-SIGMA**2 = 68.326
STANDARD ERROR OF THE ESTIMATE-SIGMA = 8.2659
SUM OF SQUARED ERRORS-SSE= 570.95
MEAN OF DEPENDENT VARIABLE = 134.51
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
  NAME COEFFICIENT ERROR 14 DF P-VALUE CORR. COEFFICIENT AT MEANS
INCOME .69851 .3962 1.763 .100 .426 .1570 .5348
PRICE -1.4421 .1245 -11.58 .000 -.952 -1.0316 -.8182
CONSTANT 174.36 40.26 4.331 .001 .757 .0000 1.2963
DURBIN-WATSON = 1.5333  VON NEUMANN RATIO = 1.6291  RHO = .19972
RESIDUAL SUM = -29.563  RESIDUAL VARIANCE = 40.782
SUM OF ABSOLUTE ERRORS= 70.487
R-SQUARE BETWEEN OBSERVED AND PREDICTED = .9435
RUNS TEST: 7 RUNS, 10 POSITIVE, 7 NEGATIVE, NORMAL STATISTIC = -1.1583
```
Consider a linear regression model with time-varying coefficients:

\[Y_t = X'_t \beta_t + \varepsilon_t \quad \text{for} \ t = 1, \ldots, N \]

The flexible least squares (FLS) method developed by Kalaba and Tesfatsion [1989] finds time paths of the coefficients which minimize the "incompatibility cost" function:

\[
C(\beta; \delta, N) = \frac{1}{1 - \delta} \left[\delta \sum_{t=1}^{N-1} (\beta_{t+1} - \beta_t)'(\beta_{t+1} - \beta_t) + (1 - \delta) \sum_{t=1}^{N} (Y_t - X'_t \beta_t)^2 \right] \]

\[
= \frac{1}{1 - \delta} \left[\delta r_D^2 (\beta; N) + (1 - \delta) r_M^2 (\beta; N) \right]
\]

where \(\beta = (\beta_1, \beta_2, \ldots, \beta_N) \) is the time-path of coefficient vectors, \(r_D^2 \) is the sum of squared residual dynamic errors, \(r_M^2 \) is the sum of squared residual measurement errors and \(\delta \in (0, 1) \) is a smoothness weight. The OLS extreme point occurs at \(\delta = 1 \) and equal weights apply when \(\delta = 0.5 \). The FLS solution is conditional on the choice of \(\delta \). The implementation of FLS with the FLS command is based on a program provided by Tesfatsion and Kalaba.

A strength of FLS is its ability to capture turning points and other systematic time variation in the coefficients. This is highlighted in the applied work of Tesfatsion and Veitch [1990] and Lütkepohl [1993]. FLS can be compared with other tests such as the Chow test and the CUSUM of recursive residuals tests (available with the DIAGNOS command). The Chow test requires the specification of a break-point and assumes coefficient constancy over a sub-period. Schneider [1991, p. 210] comments that the CUSUM test provides a global stability test and, in contrast to FLS, does not identify the sources of instability.

FLS offers an exploratory data analysis tool and requires no distributional assumptions on the error terms. However, Lütkepohl [1993, p. 733] discusses that, with some stochastic
assumptions, a likelihood function can be formed from a random walk model for the regression coefficients and FLS may be interpreted as a special Kalman filter.

FLS COMMAND OPTIONS

In general, the format of the FLS command is:

```
FLS depvar indeps / options
```

where `depvar` is the dependent variable, `indeps` is a list of independent variables with coefficients which evolve over time and `options` is a list of desired options.

Options as defined for the OLS command that are available are:

- **BEG=, END=, PREDICT=** and **RESID=**

Additional options available on the FLS command are:

- **GRAPH** Prepares gnuplot plots of the time paths of the coefficients as well as the residuals and predicted values. For more information on this option see the chapter *PLOTS AND GRAPHS*. With the **GRAPH** option the **APPEND**, **OUTPUT=**, **DEVICE=**, **PORT=** and **COMMFILE=** options are also available as described for the **GRAPH** command.

- **MAX** Reports the first-order necessary conditions for the minimization of the cost function as described in Kalaba and Tesfatsion [1989, Appendix A].

The columns on the output give the evaluations of the partial derivatives of the cost function with respect to the variables. The results should be close to zero and therefore may be machine dependent. The **MAX** option also prints the coefficient estimates.

- **NOCONSTANT** Do not include an intercept term. Otherwise, a time-varying intercept is included in the model.

- **PCOEF** Prints the coefficient estimates over the sample period.

- **COEF=** Saves the FLS estimates in a N x K matrix.

- **DELTA=** Specifies the smoothing weight δ in the range $0<\delta<1$. The default setting is **DELTA=0.5**.
The temporary variables available after the FLS command are:

- $ERR: Error code
- $K: Number of coefficients
- $LLF: Value of the incompatibility cost function
- $N: Number of observations
- $SSE: Sum of squared residual measurement errors
- $SSR: Sum of squared residual dynamic errors
- $R2: R-square

Note that some of these temporary variables may have different definitions than that used by other SHAZAM commands.

EXAMPLES

This example is inspired by simulation experiments reported in Kalaba and Tesfatsion [1989, Section 8]. The true coefficients $\beta_t = (\beta_{1t}, \beta_{t2})$ are generated so that they trace out an ellipse over time. The experiment illustrates the degree to which the FLS coefficient estimates are able to recover this time variation. The SHAZAM command file that generates the data and runs the FLS estimation is shown below.

```
sample 1 30

* Generate the time-varying coefficients
genr ai=time(0)
genr b1=.5*sin(ai*2*$pi/30)
genr b2=sin((ai*2*$pi/30) + $pi/2)

* Generate the data
genr x1=1
genr x2=1
sample 2 30
genr x1=sin(10+ai)+.01

* The next command uses the SIN function to generate COS(10 + AI)
genr x2=sin(10+ai + $pi/2)
sample 1 30
genr y=b1*x1+b2*x2

* Get the FLS estimates
fls y x1 x2 / noconstant pcoef
```
The FLS estimation output is:

```
|_FLS Y X1 X2 / NOCONSTANT PCOEF
   30 OBSERVATIONS    DEPENDENT VARIABLE = Y
...NOTE..SAMPLE RANGE SET TO:   1,   30
SMOOTHING WEIGHT : DELTA = .500
FLEXIBLE LEAST SQUARES ESTIMATES

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.26646</td>
<td>.81866</td>
</tr>
<tr>
<td>2</td>
<td>.26947</td>
<td>.82167</td>
</tr>
<tr>
<td>3</td>
<td>.33164</td>
<td>.72990</td>
</tr>
<tr>
<td>4</td>
<td>.36991</td>
<td>.58770</td>
</tr>
<tr>
<td>5</td>
<td>.39536</td>
<td>.44375</td>
</tr>
<tr>
<td>6</td>
<td>.43262</td>
<td>.28622</td>
</tr>
<tr>
<td>7</td>
<td>.46050</td>
<td>.96371E-01</td>
</tr>
<tr>
<td>8</td>
<td>.45298</td>
<td>-.10372</td>
</tr>
<tr>
<td>9</td>
<td>.42074</td>
<td>-.28179</td>
</tr>
<tr>
<td>10</td>
<td>.39140</td>
<td>-.44191</td>
</tr>
<tr>
<td>11</td>
<td>.34850</td>
<td>-.60802</td>
</tr>
<tr>
<td>12</td>
<td>.26072</td>
<td>-.74510</td>
</tr>
<tr>
<td>13</td>
<td>.17287</td>
<td>-.81824</td>
</tr>
<tr>
<td>14</td>
<td>.10615</td>
<td>-.87791</td>
</tr>
<tr>
<td>15</td>
<td>.31137E-02</td>
<td>-.92037</td>
</tr>
<tr>
<td>16</td>
<td>-.10953</td>
<td>-.88498</td>
</tr>
<tr>
<td>17</td>
<td>-.17895</td>
<td>-.81339</td>
</tr>
<tr>
<td>18</td>
<td>-.25383</td>
<td>-.74014</td>
</tr>
<tr>
<td>19</td>
<td>-.34417</td>
<td>-.61391</td>
</tr>
<tr>
<td>20</td>
<td>-.39581</td>
<td>-.44338</td>
</tr>
<tr>
<td>21</td>
<td>-.42039</td>
<td>-.27711</td>
</tr>
<tr>
<td>22</td>
<td>-.44792</td>
<td>-.10402</td>
</tr>
<tr>
<td>23</td>
<td>-.45966</td>
<td>.92531E-01</td>
</tr>
<tr>
<td>24</td>
<td>-.43288</td>
<td>.28858</td>
</tr>
<tr>
<td>25</td>
<td>-.38436</td>
<td>.45040</td>
</tr>
<tr>
<td>26</td>
<td>-.34608</td>
<td>.59009</td>
</tr>
<tr>
<td>27</td>
<td>-.29316</td>
<td>.73170</td>
</tr>
<tr>
<td>28</td>
<td>-.20245</td>
<td>.82765</td>
</tr>
<tr>
<td>29</td>
<td>-.13678</td>
<td>.84552</td>
</tr>
<tr>
<td>30</td>
<td>-.13669</td>
<td>.84543</td>
</tr>
</tbody>
</table>
```

SUM OF SQUARED RESIDUAL MEASUREMENT ERRORS = .65723E-01

SUM OF SQUARED RESIDUAL DYNAMIC ERRORS = .62918

THE INCOMPATIBILITY COST = .69491

R-SQUARE = .99328

SUMMARY STATISTICS FOR THE FLS ESTIMATES

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MEAN</th>
<th>STDEV</th>
<th>STDEV</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OF MEAN</td>
<td>OF VARIATION</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>.46592E-02</td>
<td>.33747</td>
<td>.61614E-01</td>
<td>72.431</td>
</tr>
<tr>
<td>X2</td>
<td>-.72609E-02</td>
<td>.64204</td>
<td>.11722</td>
<td>-.88.425</td>
</tr>
</tbody>
</table>

OLS ESTIMATES CALCULATED FROM A MATRIX AVERAGE OF FLS ESTIMATES

.38463E-01 .37439E-01
The first graph below compares the true sequence of coefficients for the variable X_1 with the FLS estimates. The second graph shows the elliptical shape traced out by the FLS estimates.
28. TOBIT REGRESSION

"That the automobile has reached the limit of its development is suggested by the fact that during the past year no improvements of a radical nature have been introduced."

Scientific American
January 2, 1909

The TOBIT command is available for regressions with limited dependent variables. The model is described in Tobin [1958, pp. 24-36]. References for tobit analysis (the name is coined from "Tobin’s probit") include Goldberger [1964, pp. 248-255]; Maddala [1977, Chapter 9.7]; Greene [2003, Chapter 22]; Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Chapter 19]; and Maddala [1983, Chapter 6]. An application of tobit analysis using SHAZAM can be found in Deegan and White [1976].

The tobit model estimation algorithm is based on a computer program originally written by John Cragg [1971]. SHAZAM TEST commands can be used following estimation. RESTRICT commands are not permitted.

The tobit model can be defined with the use of a latent variable as:

\[Y_t^* = X_t' \beta + \epsilon_t \]
\[Y_t = 0 \quad \text{if} \quad Y_t^* \leq 0 \]
\[Y_t = Y_t^* \quad \text{if} \quad Y_t^* > 0 \]

If a limit value other than 0 is required this can be specified with the LIMIT= option on the TOBIT command. For the latent variable,

\[E(Y_t^*) = \sigma I_t \]
where \[I_t = X_t' \alpha = X_t' (\beta / \sigma) \]

The expectation of \(Y_t \) is:

\[E(Y_t | I_t) = \sigma I_t F(I_t) + \sigma f(I_t) \]

where \(F() \) is the cumulative normal distribution function and \(f() \) is the normal density function. The expectation of \(Y_t \) conditional on \(Y_t > 0 \) is:

\[E(Y_t | I_t, Y_t > 0) = \sigma I_t + \frac{\sigma f(I_t)}{F(I_t)} \]
The parameters of the tobit model are the vector \(\alpha \) and a normalizing parameter \(\sigma \). Users should note that other computer programs may use a different parameterization.

Maximum Likelihood Estimation

The log-likelihood function for the tobit model can be expressed as:

\[
L = \sum_{Y_t > 0} -\frac{1}{2} \left[\ln(2\pi) + \ln(\sigma^2) + \left(\frac{1}{\sigma} Y_t - X'_t \alpha \right)^2 \right] + \sum_{Y_t = 0} \ln \left[1 - F(X'_t \alpha) \right]
\]

The maximum likelihood estimates of \(\alpha \) and \(\sigma \) are denoted by \(\hat{\alpha} \) and \(\hat{\sigma} \). An estimate of the index variable is \(\hat{I}_t = X'_t \hat{\alpha} \). The regression coefficients are estimated as \(\hat{\beta} = \hat{\sigma} \hat{\alpha} \). On the SHAZAM output the column **NORMALIZED COEFFICIENT** reports \(\hat{\alpha} \) and the column **REGRESSION COEFFICIENT** reports \(\hat{\beta} \). The coefficient listed for the dependent variable is actually equal to \((1/\hat{\sigma}) \) while the statistic labelled **STANDARD ERROR OF ESTIMATE** is \(\hat{\sigma} \) and **VARIANCE OF THE ESTIMATE** is \(\hat{\sigma}^2 \).

Interpreting the Results

Analysis of the tobit results is complicated by the fact that all computations are performed on the normalized \(\alpha \) vector, and the estimated standard errors of the coefficients are those of the \(\alpha \) vector and not the \(\beta \). However, it is quite easy to perform hypotheses on the regression coefficients \(\beta \) by working on the \(\alpha \) vector in the manner described in the Tobin article. SHAZAM **TEST** commands can be used to test hypotheses about the \(\beta \) vector as shown in the example in this chapter.

The predicted value of the dependent variable can be computed as:

\[
\hat{Y}_t = \hat{\sigma} \hat{I}_t F(\hat{I}_t) + \hat{\sigma} f(\hat{I}_t)
\]

The expectation of \(Y \) estimated at the mean values is given by:

\[
Y^E = \hat{\sigma} (X' \hat{\alpha}) F(X' \hat{\alpha}) + \hat{\sigma} f(X' \hat{\alpha})
\]

Alternative approaches to the interpretation of results from tobit analysis can be considered and this may depend on the specific goals of the study (see, for example, the discussion in Greene [2003, pp. 764-6]).
The **elasticity of index** for the \(k \)th variable (the percentage change in the index \(I \) for a percentage change in \(X_k \) at the sample means) is estimated as: \(\hat{\beta}_k (\bar{X}_k / \bar{Y}) \).

Another response to consider is that for \(Y \), given the censoring, the marginal effect is:

\[
\frac{\partial E(Y_t | I_t)}{\partial X_t} = \beta F(I_t)
\]

This result is then used to compute the **elasticity of \(E(Y) \)** for the \(k \)th variable, evaluated at sample means, as:

\[
\hat{\beta}_k F(\bar{X}' \hat{\alpha})(\bar{X}_k / \bar{Y}^E)
\]

An example of a study that reports these elasticities is Shishko and Rostker [1976].

With \(S \) the number of non-limit observations, the calculations for other statistics on the SHAZAM output are:

- **Predicted probability of \(Y > \text{limit} \) given average \(X(I) \):** \(F(\bar{X}' \hat{\alpha}) \)
- **The observed frequency of \(Y > \text{limit} \):** \(S / N \)
- **At mean values of all \(X(I) \), \(E(Y) = \bar{Y}^E \)**
- **Mean square error**
 \[
 \frac{1}{N} \sum_{t=1}^{N} (Y_t - \hat{Y}_t)^2
 \]
- **Mean absolute error**
 \[
 \frac{1}{N} \sum_{t=1}^{N} |Y_t - \hat{Y}_t|
 \]

When the **list** or **max** options are used output will include, for each observation:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>(\hat{I}_t)</th>
<th>OBSERVED</th>
<th>(Y_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob(X)</td>
<td>(F(\hat{I}_t))</td>
<td>EXPECTED</td>
<td>(\hat{Y}_t)</td>
</tr>
<tr>
<td>density(X)</td>
<td>(f(\hat{I}_t))</td>
<td>CONDITIONAL</td>
<td>(\hat{Y}_t / F(\hat{I}_t)) for (Y_t > 0)</td>
</tr>
</tbody>
</table>
In general, the format of the **TOBIT** command is:

TOBIT depvar indeps /options

where *depvar* is the dependent variable, *indeps* is a list of independent variables, and *options* is a list of desired options. Options as defined for the **OLS** command that are available are:

MAX, NOCONSTANT, NONORM, BEG=, END=, COEF=, COV=, STDERR=, TRATIO=

and **WEIGHT=**

Additional options available on the **TOBIT** command are:

DUMP

Dumps the matrix of second derivatives, the moment matrices of limit and non-limit observations, and some other output that is probably not useful to the average user.

LIST

Lists, for each observation, the value of the index I, the density and cumulative probabilities corresponding to the index I, and the observed, expected and conditional values of the dependent variable. No plot is produced.

NEGATIVE

The observed value of the dependent variable can be greater than or less than the limit value.

PCOR

Prints the CORrelation matrix of the *normalized* coefficients.

PCOV

Prints the estimated asymptotic COVariance matrix of the *normalized* coefficients. The matrix is the inverse of the negative of the matrix of second derivatives of the log-likelihood function. In a large sample the *normalized* coefficients will be normally distributed.

UPPER

Used if the limit is an **UPPER** limit rather than a lower limit.

CONV=

Sets the CONVergence criterion for the *normalized* coefficients. The default is \(0.0000001\) (that is, \(1 \times 10^{-8}\)). This is the same as using **CONV=1E-8**.

INDEX=

Saves the computed INDEX in the variable specified.
ITER= Sets the maximum number of iterations allowed. The default is 25.

LIMIT= Specifies the limiting value of the dependent variable. The default is LIMIT=0.

PITER= Specifies the frequency with which iterations are to be printed. The default is PITER=1. If PITER=0 is specified, no iterations are printed.

PREDICT= Saves the predicted expected values in the variable specified.

Note that the PCOR, COEF=, COV=, STDERR= and TRATIO= options all refer to the normalized coefficients. If the WEIGHT= option is used the method performed follows that described for the REPLICATE option in OLS.

The temporary variables available with the TOBIT command are:

$ERR, $K, $LLF, $N, $SIG2, and $SSE.

The variable $K is the number of estimated coefficients (the number of independent variables plus one for the estimate of σ).

EXAMPLES

The following is an example of tobit model estimation using data found in Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Table 19.2, p. 800]. The SHAZAM commands include TEST commands to derive the standard error and associated asymptotic normal test statistics for the regression coefficients. This is easy to do since as explained earlier the coefficient on the dependent variable Y is simply 1/σ. The command file is:

```
sample 1 20
read (table19.2) y x
tobit y x / list piter=0
test x/y
test constant/y
```

The SHAZAM output is:
<table>
<thead>
<tr>
<th>_READ (TABLE19.2) Y X</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOBIT Y X / LIST PITER=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOBIT ANALYSIS, LIMIT=.00 25 MAX ITERATIONS</td>
</tr>
<tr>
<td>6 LIMIT OBSERVATIONS</td>
</tr>
<tr>
<td>14 NON-LIMIT OBSERVATIONS</td>
</tr>
</tbody>
</table>

FIRST DERIVATIVES OF LOG OF LIKELIHOOD FUNCTION EVALUATED AT MAXIMUM |
| .19539925E-13 .88817842E-15 -.23236187E-13 |

NUMBER OF ITERATIONS = 3

DEPENDENT VARIABLE = Y

VARIANCE OF THE ESTIMATE = 13.184

STANDARD ERROR OF THE ESTIMATE = 3.6310

<table>
<thead>
<tr>
<th>ASYMPTOTIC VARIABLE</th>
<th>NORMALIZED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>ASYMPTOTIC REGRESSION ELASTICITY</th>
<th>ELASTICITY OF INDEX</th>
<th>ELASTICITY OF E(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>.24820</td>
<td>.58959E-01</td>
<td>4.2096</td>
<td>.90120</td>
<td>1.9458</td>
<td>1.9970</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-1.5786</td>
<td>.60413</td>
<td>-2.6130</td>
<td>-.57319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>.27541</td>
<td>.53292E-01</td>
<td>5.1679</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE PREDICTED PROBABILITY OF Y > LIMIT GIVEN AVERAGE X (I) = .8479

THE OBSERVED FREQUENCY OF Y > LIMIT IS = .7000

AT MEAN VALUES OF ALL X(I), E(Y) = 4.0177

<table>
<thead>
<tr>
<th>DEPENDENT VARIABLE</th>
<th>OB</th>
<th>INDEX</th>
<th>PROB(X)</th>
<th>DENSITY(X)</th>
<th>OBSERVED</th>
<th>EXPECTED</th>
<th>CONDITIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>-1.3304</td>
<td>.91692E-01</td>
<td>.16465</td>
<td>.00000</td>
<td>.15491</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.0822</td>
<td>.13958</td>
<td>.22212</td>
<td>.00000</td>
<td>.25805</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-.83402</td>
<td>.20214</td>
<td>.28175</td>
<td>.00000</td>
<td>.41091</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-.58582</td>
<td>.27900</td>
<td>.33604</td>
<td>.00000</td>
<td>.62670</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-.33762</td>
<td>.36782</td>
<td>.37684</td>
<td>3.1348</td>
<td>.91739</td>
<td>2.4941</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-.89429E-01</td>
<td>.46437</td>
<td>.39735</td>
<td>3.5080</td>
<td>1.2920</td>
<td>2.7822</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>.15877</td>
<td>.56307</td>
<td>.39395</td>
<td>.83120</td>
<td>1.7550</td>
<td>3.1169</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>.40696</td>
<td>.65798</td>
<td>.36724</td>
<td>8.0064</td>
<td>2.3057</td>
<td>3.5042</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>.65516</td>
<td>.74382</td>
<td>.32189</td>
<td>.00000</td>
<td>2.9382</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.90335</td>
<td>.81683</td>
<td>.26528</td>
<td>.00000</td>
<td>3.6425</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.1515</td>
<td>.87525</td>
<td>.20557</td>
<td>2.9352</td>
<td>4.4061</td>
<td>5.0341</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.3997</td>
<td>.91921</td>
<td>.14978</td>
<td>3.9048</td>
<td>5.2157</td>
<td>5.6741</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.6479</td>
<td>.95032</td>
<td>.10261</td>
<td>6.5144</td>
<td>6.0590</td>
<td>6.3758</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.8961</td>
<td>.97103</td>
<td>.66099E-01</td>
<td>5.9772</td>
<td>6.9254</td>
<td>7.1321</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.1443</td>
<td>.98400</td>
<td>.40034E-01</td>
<td>3.7260</td>
<td>7.8069</td>
<td>7.9338</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.3925</td>
<td>.99163</td>
<td>.22799E-01</td>
<td>10.412</td>
<td>8.6974</td>
<td>8.7708</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.6407</td>
<td>.99586</td>
<td>.12208E-01</td>
<td>16.906</td>
<td>9.5932</td>
<td>9.6330</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.8889</td>
<td>.99807</td>
<td>.61466E-02</td>
<td>9.2968</td>
<td>10.492</td>
<td>10.512</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.1371</td>
<td>.99915</td>
<td>.29098E-02</td>
<td>7.8916</td>
<td>11.392</td>
<td>11.401</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD FUNCTION= -41.255240
MEAN-SQUARE ERROR= 8.0589568
MEAN ERROR= -.40295353E-02
MEAN ABSOLUTE ERROR= 2.1501402
SQUARED CORRELATION BETWEEN OBSERVED AND EXPECTED VALUES= .66061

<table>
<thead>
<tr>
<th>TEST X/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST VALUE = .90120 STD. ERROR OF TEST VALUE .17186</td>
</tr>
<tr>
<td>ASYMPTOTIC NORMAL STATISTIC = 5.2437210 P-VALUE=.00000</td>
</tr>
<tr>
<td>WALD CHI-SQUARE STATISTIC = 27.496610 WITH 1 D.F. P-VALUE=.00000</td>
</tr>
<tr>
<td>UPPER BOUND ON P-VALUE BY CHEBYCHEV INEQUALITY = .03637</td>
</tr>
<tr>
<td>Test Constant/Y</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Test Value = -5.7319, Std. Error of Test Value = 2.2383</td>
</tr>
<tr>
<td>Asymptotic Normal Statistic = -2.5608774, P-Value = .01044</td>
</tr>
<tr>
<td>Wald Chi-Square Statistic = 6.5580928, with 1 D.F., P-Value = .01044</td>
</tr>
<tr>
<td>Upper Bound on P-Value by Chebychev Inequality = .15248</td>
</tr>
</tbody>
</table>
A single linear equation can be estimated by Two Stage Least Squares (2SLS) with the \texttt{2SLS} command in SHAZAM. The \texttt{2SLS} command can be used for any instrumental variables estimation. The \texttt{INST} command can also be used, but the output is identical to \texttt{2SLS}. The \texttt{SYSTEM} command in SHAZAM provides features for joint estimation of a set of linear equations by either seemingly unrelated regression (SUR) estimation or by Three Stage Least Squares (3SLS). A reference for SUR is Greene [2003, Chapter 14] and a discussion of instrumental variable estimation and 3SLS is Greene [2003, Chapter 15].

Note that these estimation techniques are available for nonlinear models with the \texttt{NL} command described in the chapter \textit{NONLINEAR REGRESSION}. The \texttt{SYSTEM} command does not estimate models with autoregressive errors. A set of seemingly unrelated regression equations with autoregressive errors can be estimated by using the \texttt{NL} command with the \texttt{AUTO} option.

\textbf{2SLS OR INSTRUMENTAL VARIABLE ESTIMATION}

Consider the model: \[y = Z \delta + \varepsilon \]

where \(y \) is a \((N \times 1)\) vector of observations on the dependent variable, \(Z \) is a \((N \times p)\) matrix of observations on the explanatory variables, \(\varepsilon \) is a \((N \times 1)\) vector of disturbances and the number of unknown parameters in the vector \(\delta \) is \(p \). Suppose that some of the regressors are correlated with the disturbance term. Introduce a \((N \times K)\) data matrix \(X \) composed of variables that are exogenous and independent of the disturbance. Premultiplying the above statistical model by \(X \) gives the transformed statistical model:

\[X'y = X'Z \delta + X'\varepsilon \]

The 2SLS estimator is: \[\hat{\delta} = \left[Z'X(X'X)^{-1}X'Z \right]^{-1} Z'X(X'X)^{-1}X'y \]
and the estimated covariance matrix of coefficients is given by:

$$\hat{\sigma}^2[Z'X(X'X)^{-1}X'Z]^{-1}$$

where SHAZAM uses:

$$\hat{\sigma}^2 = \frac{1}{N - p}(y - Z\hat{\delta})(y - Z\hat{\delta})$$

Some econometricians would argue that the denominator should just be N (see, for example, Greene [2003, pp. 77-8]). For a divisor of N, instead of $N - p$, the DN option should be specified on the 2SLS command. The estimated coefficients are not affected in either case, but all the variances and t-ratios will be. Users should note that R^2 in 2SLS, and in many other models, is not well defined and could easily be negative. In fact, the lower bound is minus infinity. Many econometricians would prefer to use the squared-correlation coefficient between the observed and predicted dependent variable instead for these models. This is obtained with the RSTAT option and is reported as R-SQUARE BETWEEN OBSERVED AND PREDICTED. It is also available in the temporary variable $R2OP$.

2SLS and INST Command Options

In general, the format of the 2SLS command is:

2SLS depvar rhsvars (exogs) / options

where depvar is the dependent variable, rhsvars is a list of all the right-hand side variables in the equation, exogs is a list of all the exogenous variables in the system, and options is a list of desired options.

Note that the list of exogs must be enclosed in parentheses, and that SHAZAM automatically includes a constant in the list of exogenous variables unless the NOCONEXOG option is used. If the number of exogenous variables is less than the number of right-hand side variables, the equation will be underidentified. Equation estimation requires $N \geq K \geq p$.

While most of the OLS options are also available as options on 2SLS, the user should be aware that hypothesis testing in 2SLS is complicated by the unknown distributions, so the normal t and F tests are invalid. At best these can be interpreted as being asymptotically normal and chi-square. The F test from an Analysis of Variance table is invalid, and the printed R^2, which is defined as 1 minus the unexplained proportion of the total variance,
may not coincide with that obtained by using other programs which do the calculation differently.

If the interest is instrumental variables estimation then the \texttt{INST} command can be used with the general format:

\texttt{INST depvar rhsvars (exogs) / options}

The output for the \texttt{INST} command is identical to \texttt{2SLS}.

Options as defined for \texttt{OLS} that are available on the \texttt{2SLS} and \texttt{INST} commands are:

\texttt{DN, DUMP, GF, LIST, MAX, NOCONSTANT, PCOR, PCOV, RESTRICT, RSTAT, BEG=, END=, COEF=, COV=, PREDICT= RESID=, STDERR= and TRATIO=}

An additional option is:

\texttt{NOCONEXOG} Specifies that a constant is not to be included in the list of exogenous variables. If this option is not specified then SHAZAM includes a column of 1's in the X matrix.

The temporary variables available on the \texttt{2SLS} command are:

$ADR2, \$DF, \$DW, \$ERR, \$K, \$N, \$R2, \$R2OP, \$RAW, \$RHO, \$SIG2$ and SSE.

For more information on temporary variables see the chapter \textit{MISCELLANEOUS COMMANDS AND INFORMATION} and the chapter \textit{ORDINARY LEAST SQUARES}.

\textit{Example}

An example of the \texttt{2SLS} command using the first equation of the Klein model [Theil, 1971] is shown in the SHAZAM output:

```
  2SLS C PLAG P WGWP (WG T G TIME PLAG KLAG XLAG) / DN RSTAT
  TWO STAGE LEAST SQUARES - DEPENDENT VARIABLE = C
  7 EXOGENOUS VARIABLES
  3 POSSIBLE ENDOGENOUS VARIABLES
  21 OBSERVATIONS
  DN OPTION IN EFFECT - DIVISOR IS N
```
R-SQUARE = .9767 R-SQUARE ADJUSTED = .9726
VARIANCE OF THE ESTIMATE-SIGMA**2 = 1.0441
STANDARD ERROR OF THE ESTIMATE-SIGMA = 1.0218
SUM OF SQUARED ERRORS-SSE= 21.925
MEAN OF DEPENDENT VARIABLE = 53.995

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>COEFFICIENT</td>
<td>ERROR</td>
<td>***** DF</td>
<td>P-VALUE CORR. COEFFICIENT AT MEANS</td>
</tr>
<tr>
<td>PLAG</td>
<td>.21623</td>
<td>.1073</td>
<td>2.016</td>
<td>.044 .439 .1270 .0656</td>
</tr>
<tr>
<td>P</td>
<td>.17302E-01</td>
<td>.1180</td>
<td>.1466</td>
<td>.883 .036 .0106 .0054</td>
</tr>
<tr>
<td>WGWP</td>
<td>.81018</td>
<td>.4025E-01</td>
<td>20.13</td>
<td>.000 .980 .8922 .6224</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>16.555</td>
<td>1.321</td>
<td>12.53</td>
<td>.000 .950 .0000 .3066</td>
</tr>
</tbody>
</table>

DURBIN-WATSON = 1.4851 VON NEUMANN RATIO = 1.5593 RHO = .20423
RESIDUAL SUM = -1.5632E-12 RESIDUAL VARIANCE = 1.0441
SUM OF ABSOLUTE ERRORS= 17.866
R-SQUARE BETWEEN OBSERVED AND PREDICTED = .9768
RUNS TEST: 9 RUNS, 9 POSITIVE, 12 NEGATIVE, NORMAL STATISTIC = -1.0460

SYSTEMS OF EQUATIONS

SHAZAM can estimate a system of linear equations. Linear restrictions can be imposed on
the coefficients within or across equations. The seemingly unrelated regressions (SUR) case
is also known as Zellner estimation, or multivariate regression. The simultaneous equation
estimation technique is three-stage least squares (3SLS). As an option, SHAZAM will iterate
until convergence.

A system of M equations may be written as:

\[y_1 = Z_1 \delta_1 + \varepsilon_1 \]
\[y_2 = Z_2 \delta_2 + \varepsilon_2 \]
\[\vdots \]
\[y_M = Z_M \delta_M + \varepsilon_M \]

or, more compactly, as: \[y = Z \delta + \varepsilon \] where

\[y = [y_1 \ y_2 \ \ldots \ y_M]' \] is an M \times N \times 1 vector of observations on the left-hand side dependent variable.

\[Z = [Z_1 \quad 0 \quad 0 \quad] \]
\[[0 \quad Z_2 \quad 0 \quad] \]
\[[\quad \ldots \quad \ldots \quad] \]
\[[0 \quad 0 \quad Z_M] \]

is an M \times N \times P matrix of jointly endogenous and exogenous variables in the system and
\[P = p_1 + p_2 + \ldots + p_M \] where \(p_i \) is the number of right hand side variables in equation i.
\[
\delta = [\delta_1 \ \delta_2 \ \ldots \ \delta_M]' \quad \text{is a P x 1 vector of unknown parameters.}
\]

\[
\varepsilon = [\varepsilon_1' \ \varepsilon_2' \ \ldots \ \varepsilon_M']' \quad \text{is an M N x 1 vector of disturbances.}
\]

All exogenous variables of the system are in the matrix X. In the case of SUR \(Z = X \) since there are no jointly endogenous variables in a SUR system.

The variance-covariance matrix of disturbances is given by:

\[
E[\varepsilon \varepsilon'] = \begin{bmatrix}
\sigma_{11}I & \sigma_{12}I & \cdots & \sigma_{1M}I \\
\sigma_{21}I & \sigma_{22}I & \cdots & \sigma_{2M}I \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{M1}I & \sigma_{M2}I & \cdots & \sigma_{MM}I
\end{bmatrix} = \Sigma \otimes I_N
\]

Seemingly Unrelated Regression

The first step in the SUR estimation procedure is to estimate the \(\sigma_{ij} \) from OLS residuals as:

\[
\hat{\sigma}_{ij} = \frac{1}{\tau} (y_i - Z_i \hat{\delta}_{OLS,j}')(y_j - Z_j \hat{\delta}_{OLS,j})
\]

where \(\hat{\delta}_{OLS,j} = (Z'_i Z_i)^{-1} Z'_i y_i \) and \(\tau \) can be set using:

\[
\tau_1 = N \quad \text{or} \quad \tau_2 = (MN - P)/M
\]

If the DN option is used SHAZAM will use \(\tau = \tau_1 \), otherwise \(\tau = \tau_2 \) is used.

With the matrix \(\hat{\Sigma} \) containing individual elements \(\hat{\sigma}_{ij} \) the SUR estimator is:

\[
\hat{\delta}_{SUR} = [Z'(\hat{\Sigma}^{-1} \otimes I_N)Z]^{-1} Z'(\hat{\Sigma}^{-1} \otimes I_N)y
\]

and the covariance matrix of the coefficients is estimated as:

\[
[Z'(\hat{\Sigma}^{-1} \otimes I_N)Z]^{-1}
\]

With the assumption of normality the log-likelihood function can be expressed as:

\[
L = - \frac{MN}{2} \ln(2\pi) - \frac{N}{2} \ln|\Sigma| - \frac{1}{2} (y - Z\delta)'(\Sigma^{-1} \otimes I_N)(y - Z\delta)
\]
Restricted Seemingly Unrelated Regression

A set of q linear restrictions may be written in the form $R\delta = r$ where R and r are known matrices of dimensions $(q \times P)$ and $(q \times 1)$ respectively. When the \texttt{RESTRICT} and \texttt{ITER=0} options are specified on the \texttt{SYSTEM} command the restricted estimator is obtained from:

$$\hat{\delta}_R = \hat{\delta}_{OLS} + (Z'Z)^{-1}R'(R(Z'Z)^{-1}R')^{-1}(r - R\hat{\delta}_{OLS})$$

Estimates of the error variances and covariances are obtained from the residuals from the restricted estimation as:

$$\hat{\sigma}_{ij} = \frac{1}{\tau}(y_i - Z_i\hat{\delta}_{R,i})(y_j - Z_j\hat{\delta}_{R,j})$$

With the \texttt{DN} option $\tau = \tau_1$ otherwise $\tau = \tau_2$ where

$$\tau_1 = N \quad \text{or} \quad \tau_2 = (MN - (P - q))/M$$

When the \texttt{RESTRICT} and \texttt{ITER=1} options are specified on the \texttt{SYSTEM} command the restricted seemingly unrelated regression estimator is obtained from:

$$\hat{\delta}_{RSUR} = \hat{\delta} + \hat{C}R'(R\hat{C}R')^{-1}(r - R\hat{\delta})$$

where $\hat{C} = [Z'(\hat{\Sigma}^{-1} \otimes I_N)Z]^{-1}$ and $\hat{\delta} = \hat{C}Z'(\hat{\Sigma}^{-1} \otimes I_N)y$

Three Stage Least Squares

The first step in the 3SLS estimation procedure is to estimate the σ_{ij} from 2SLS residuals as:

$$\hat{\sigma}_{ij} = \frac{1}{\tau}(y_i - Z_i\hat{\delta}_{2SLS,i})(y_j - Z_j\hat{\delta}_{2SLS,j})$$

where τ is as described above. The 3SLS estimator is given by:

$$\hat{\delta} = [Z'\hat{\Sigma}^{-1} \otimes X(X'X)^{-1}X']^{-1}Z[\hat{\Sigma}^{-1} \otimes X(X'X)^{-1}X']y$$

and the covariance matrix of the coefficients is estimated as:
Iterative Estimation

When estimating a system of equations by SUR or 3SLS, the estimation may be iterated by using the \texttt{ITER=} option. In this case, the initial estimation is done to estimate \(\hat{\delta} \). A new set of residuals is generated and used to estimate a new variance-covariance matrix. This matrix is then used to compute a new set of parameter estimates. The iterations proceed until the parameters converge or until the maximum number of iterations specified on the \texttt{ITER=} option is reached.

Model Diagnostics

A system R\(^2\) is computed as:

\[
\tilde{R}^2 = 1 - \frac{|E'E|}{|Y'*Y_*|}
\]

where \(Y_* \) is a \((N \times M)\) matrix with column \(i \) containing the observations on the left hand side variable for equation \(i \) measured as deviations from the sample mean and \(E \) is a \((N \times M)\) matrix with the estimated residuals for equation \(i \) in column \(i \). This statistic is frequently very high and should be interpreted with caution (see Berndt [1991, p. 468]). The system R\(^2\) is not reported when the \texttt{NOCONSTANT} option is used.

The SHAZAM output from systems estimation includes a test of the null hypothesis that the slope coefficients are jointly zero. This is equivalent to the F-statistic used to determine whether all the slope coefficients in a multiple regression model are zero. The test of the overall significance is calculated as:

\[
-N \ln(1 - \tilde{R}^2)
\]

The statistic can be compared with a chi-square distribution with degrees of freedom equal to the number of slope coefficients in the system.

With SUR estimation, the Breusch-Pagan [1980] Lagrange multiplier test gives a test for a diagonal covariance matrix. With the squared correlation coefficient of residuals given by:

\[
r_{ij}^2 = \frac{\sigma_{ij}^2}{\hat{\sigma}_{ii} \hat{\sigma}_{jj}}
\]
the statistic reported on SHAZAM output as **BREUSCH-PAGAN LM TEST FOR DIAGONAL COVARIANCE MATRIX** is computed as:

$$N \sum_{i=2}^{M} \sum_{j=1}^{i-1} \tau_{ij}^2$$

Under the null hypothesis of a diagonal covariance structure the statistic has an asymptotic \(\chi^2(M(M-1)/2) \) distribution.

The SUR estimation results also report a **LIKELIHOOD RATIO TEST OF DIAGONAL COVARIANCE MATRIX** as an alternative to the Breusch-Pagan Lagrange multiplier test. This statistic is computed as:

$$N \left[\sum_{i=1}^{M} \ln(\hat{\sigma}_{ii}^2) - \ln(\hat{\Sigma}) \right]$$

with \(\tau = N \)

The statistic has an asymptotic \(\chi^2(M(M-1)/2) \) distribution. For discussion see, for example, Greene [2003, p. 350].

SYSTEMS MODEL SPECIFICATION

As the setup for equation systems is quite general SHAZAM will handle many types of linear models. To set up a set of seemingly unrelated regression equations for estimation, the commands are:

- **SYSTEM** neq / options
- **OLS** depvar indeps

 . . .
- **OLS** depvar indeps

where **neq** is the number of equations, and **options** is a list of desired options. After the **SYSTEM** command there should be an **OLS** command for each equation in the system. Do NOT use **options** on the **OLS** commands. They must only be used with the **SYSTEM** command.

To set up a restricted SUR estimation, the commands are:
The RESTRICT option on the SYSTEM command specifies that linear restrictions are to be imposed on the parameters in the system. The restrictions must be linear and are entered in a set of RESTRICT commands followed by END. Note that when RESTRICT commands are used the RESTRICT option on the SYSTEM command must be specified.

To set up a simultaneous equations system for estimation by 3SLS, the commands are:

```
SYSTEM neq exogs / options
OLS depvar indeps
. . .
OLS depvar indeps
RESTRICT restriction
. . .
RESTRICT restriction
END
```

where \texttt{neq} is the number of equations, \texttt{exogs} is a list of the exogenous variables and \texttt{options} is a list of desired options. The \texttt{exogs} must ONLY be included for Three Stage Least Squares and not for Zellner estimation. Linear restrictions on the parameters can be imposed by specifying the \texttt{RESTRICT} option on the \texttt{SYSTEM} command and including a set of \texttt{RESTRICT} commands terminated by an \texttt{END} command. Nonlinear restrictions cannot be imposed but may be tested using \texttt{TEST} commands.

Following model estimation linear or nonlinear hypotheses may be tested with \texttt{TEST} commands. For a discussion about linear and non-linear hypothesis testing, see the chapter \textit{HYPOTHESIS TESTING}.

Estimation of systems of equations can be rather slow, especially if there are many equations or variables in the system. Options should be carefully specified so the system does not have to be re-estimated. Imposing restrictions on the coefficients will also slow the estimation. In large models, it is possible that SHAZAM will require additional memory. For information on how to proceed in this case, see the \texttt{PAR} command discussed in the
chapter *HOW TO RUN SHAZAM* and the chapter *MISCELLANEOUS COMMANDS AND INFORMATION*.

SYSTEM Command Options

The **OLS** options available are: **STDERR=** and **TRATIO=**. Additional options available on the **SYSTEM** command are:

- **DN**
 This is a useful option and its use is strongly recommended. With this option the fact that the estimation procedure has good asymptotic properties is recognized. The covariance matrix is computed using **N** as the Divisor, rather than a measure which provides a dubious degrees of freedom adjustment. The use of the **DN** option is consistent with Theil's development. Without the **DN** option, the degrees of freedom correction for the covariances is as described above.

- **DUMP**
 DUMP's a lot of intermediate output after each iteration, including the system **X'X** matrix and its inverse, and the inverse of the residual covariance matrix (SIGMA). This option is primarily of interest to SHAZAM consultants.

- **FULL**
 Lists **FULL** equation output. This output is similar to that of regular **OLS** regressions. **FULL** is automatically in effect except in TALK mode. It can be turned off with the **NOFULL** option.

- **LIST**
 Used as on **OLS** commands to control output. They should only be used when full output is required for each equation. Users should be aware when interpreting the equation-by-equation output that some statistics printed are not valid in system estimation. If systems analysis is properly understood the questionable statistics are easily identified. Since the analysis of variance F-test is invalid it is not printed; if it is desired, **TEST** commands should be used.

- **NOCONEXOG**
 If a list of exogenous variables is included for either Two or Three Stage Least Squares SHAZAM will automatically add a **CONSTANT** to the list. If you do not want SHAZAM to automatically include a constant in the list of exogenous variables, specify the **NOCONEXOG** option.

- **NOCONSTANT**
 Normally, SHAZAM will automatically put an intercept in each equation in the system. If there are some (or all) equations in which no
intercept is desired the **NOCONSTANT** option should be specified. Then, an intercept should be created by generating a variable of ones (1) with a **GENR** command and this variable should be included in each equation in which an intercept is desired. Without the **NOCONSTANT** option the intercept will only be printed in the **FULL** equation-by-equation output, and the variances of the intercepts will only be approximate unless the model converges.

PCOR

Prints the **COR**relation and **COV**ariance matrices of all coefficients in the system after convergence. If these options are specified the matrices will also be printed for each equation in the equation-by-equation output.

PCOV

Prints the residual covariance matrix (**SIGMA**) after each iteration. If this option is not used the matrix will be printed for the first and final iterations. This option can add pages of output if there are many equations in the system and, thus, should not be specified unless this information is specifically needed.

RESTRICT

Forces linear restrictions as specified with **RESTRICT** commands. The **RESTRICT** commands follow the **OLS** commands. Only linear restrictions are permitted. Users should be aware that iterative estimates may not necessarily be maximum likelihood estimates if restrictions on the intercepts of the equation are imposed.

COEF=

Saves the values of the **COEF**icients in the variable specified. The values for all equations will be in a single vector. No values for the equation intercepts will be saved so if these are required the directions above for the **NOCONSTANT** option should be followed.

COEFMAT=

Saves the values of the **COEF**icients in the variable specified in **MAT**rix form with each column of the matrix representing one equation. Equation intercepts will also be saved. This is useful if the coefficients for a single equation need to be specified on the **FC** command.

CONV=

Specifies a **CONV**ergence criterion to stop the iterative procedure (subject to the maximum number of iterations specified with the **ITER**= option).
option). The criterion is the maximum desired percentage change in each of the coefficients. The default is 0.001.

COV= Saves the COVariance matrix in the variable specified. No values for the variances and covariances of equation intercepts will be saved so if these are required the directions above for the **NOCONSTANT** option should be followed.

ITER= Specifies the maximum number of **ITERations** performed if an iterative procedure is desired. If this option is not specified, one iteration is done. If **ITER=0** is specified, the system is estimated without the Generalized Least Squares procedure which uses the covariance matrix of residuals. This would be equivalent to running separate **OLS** regressions (or **2SLS**), but more expensive. **ITER=0** would be appropriate only if there were restrictions across equations or hypothesis testing across equations.

OUT= and **IN=** are usually assigned to the same unit so the latest information replaces existing information. Units 11-49 are available and may be assigned to a file with the SHAZAM **FILE** command or an operating system command.

PITER= Specifies the frequency with which **ITERations** are to be **Printed**. The default is **PITER=1**. If **PITER=0** is specified, no iterations are printed.

NOTE: It is important to remember to create a system file to be attached to the appropriate unit before using the **OUT=** option. Without this file the information will be lost. The use of **OUT=** will add slightly to the cost, but will substantially lower the cost of restarting the model. It is also important to run the same system on subsequent runs with the **IN=** option. The **IN=** option should never be run before there is anything to input. See the example at the end of this chapter.
TWO-STAGE LEAST SQUARES AND SYSTEMS OF EQUATIONS

PREDICT= Saves the **PREDICT**ed values of the dependent variable in a N x M matrix, where N is the number of observations and M is the number of equations.

RESID= Saves the values of the estimated **RESID**uals in a N x M matrix.

SIGMA= Saves the residual covariance matrix $\hat{\Sigma}$ in the variable specified.

The temporary variables available are:

$\$ERR, $\$N and $\$SIG2

When more than one equation is estimated the value of the temporary variable $\$SIG2$ is the value $\ln|\hat{\Sigma}|$. If there is only one equation, $\$SIG2$ will be the same as that obtained from OLS estimation.

With SUR estimation the temporary variable $\$LLF$ is also available.

EXAMPLES

The next list of SHAZAM commands shows the use of the **SYSTEM** command for 3SLS estimation of Klein's model I described in Theil [1971, Chapter 9.2].

```
system 3 wg t g time plag klag xlag / dn
ols c plag p wgwp
ols i plag klag p
ols wp time xlag x
test p:1=p:2
```

There are 3 equations in the system and the variables WG, T, G, TIME, PLAG, KLAG and XLAG are the exogenous variables. SHAZAM automatically includes a constant in the list of exogenous variables. (All identities have already been substituted.) Three **OLS** commands are included to describe the three equations in the system. The **TEST** command will test the hypothesis that the coefficient on variable P in equation 1 is equal to the coefficient on variable P in equation 2.

The SHAZAM output from the 3SLS estimation is:

```
  _SYSTEM 3 WG T G TIME PLAG KLAG XLAG / DN
  _OLS C PLAG P WGWP
  _OLS I PLAG KLAG P
```
TWO-STAGE LEAST SQUARES AND SYSTEMS OF EQUATIONS

OLS WP TIME XLAG X

THREE STAGE LEAST SQUARES-- 3 EQUATIONS
7 EXOGENOUS VARIABLES
6 POSSIBLE ENDOGENOUS VARIABLES
9 RIGHT-HAND SIDE VARIABLES IN SYSTEM
MAX ITERATIONS = 1 CONVERGENCE TOLERANCE = 0.10000E-02
21 OBSERVATIONS
DN OPTION IN EFFECT - DIVISOR IS N

ITERATION 0 COEFFICIENTS
0.21623 0.17302E-01 0.81018 0.61594 -0.15779 0.15022
0.13040 0.14667 0.43886

ITERATION 0 SIGMA
1.0441
0.43785 1.3832
-0.38523 0.19261 0.47643
LOG OF DETERMINANT OF SIGMA = -1.2458

ITERATION 1 SIGMA INVERSE
2.1615
-0.98292 1.2131
2.1451 -1.2852 4.3530

ITERATION 1 COEFFICIENTS
0.16314 0.12489 0.79008 0.75572 -0.19485 -0.13079E-01
0.14967 0.18129 0.40049

ITERATION 1 SIGMA
0.89176
0.41132 2.0930
-0.39361 0.40305 0.52003
LOG OF DETERMINANT OF SIGMA = -1.2623

SYSTEM R-SQUARE = 0.9995
TEST OF THE OVERALL SIGNIFICANCE = 159.41
CHI-SQUARE WITH 9 D.F. P-VALUE= 0.00000

VARIABLE COEFFICIENT ST.ERROR T-RATIO
PLAG 0.16314 0.10044 1.6243
P 0.12489 0.10813 1.1550
WGWP 0.79008 0.37938E-01 20.826
PLAG 0.75572 0.15293 4.9415
KLAG -0.19485 0.32531E-01 -5.9897
P -0.13079E-01 0.16190 -0.80787E-01
TIME 0.14967 0.27935E-01 5.3579
XLAG 0.18129 0.34159E-01 5.3073
X 0.40049 0.31813E-01 12.589

EQUATION 1 OF 3 EQUATIONS
DEPENDENT VARIABLE = C 21 OBSERVATIONS
R-SQUARE = 0.9801
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.89176
STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.94433
SUM OF SQUARED ERRORS-SSE= 18.727
MEAN OF DEPENDENT VARIABLE = 53.995

ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR ------- P-VALUE CORR. COEFFICIENT AT MEANS
PLAG 0.16314 0.1004 1.624 0.104 0.367 0.0958 0.0495
P 0.12489 0.1081 1.155 0.248 0.270 0.0768 0.0391
WGWP 0.79008 0.3794E-01 20.83 0.000 0.981 0.8701 0.6070
CONSTANT 16.441 1.302 12.63 0.000 0.951 0.0000 0.3045
EQUATION 2 OF 3 EQUATIONS
DEPENDENT VARIABLE = I 21 OBSERVATIONS
R-SQUARE = 0.8258
VARIANCE OF THE ESTIMATE-SIGMA**2 = 2.0930
STANDARD ERROR OF THE ESTIMATE-SIGMA = 1.4467
SUM OF SQUARED ERRORS-SSE= 43.954
MEAN OF DEPENDENT VARIABLE = 1.2667

<table>
<thead>
<tr>
<th>ASYMPTOTIC VARIABLE</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAG</td>
<td>0.75572</td>
<td>0.1529</td>
<td>4.942</td>
<td>0.000</td>
<td>0.8570 9.7704</td>
</tr>
<tr>
<td>KLAG</td>
<td>-0.19485</td>
<td>0.3253E-01</td>
<td>-5.990</td>
<td>0.000</td>
<td>-0.5441 -30.8417</td>
</tr>
<tr>
<td>P</td>
<td>-0.13079E+01</td>
<td>-0.8079E-01</td>
<td>0.936</td>
<td>0.020</td>
<td>-0.1550 -0.1744</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>28.178</td>
<td>6.796</td>
<td>4.146</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

EQUATION 3 OF 3 EQUATIONS
DEPENDENT VARIABLE = WP 21 OBSERVATIONS
R-SQUARE = 0.9863
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.52003
STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.72113
SUM OF SQUARED ERRORS-SSE= 10.921
MEAN OF DEPENDENT VARIABLE = 36.362

<table>
<thead>
<tr>
<th>ASYMPTOTIC VARIABLE</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>0.14967</td>
<td>0.2794E-01</td>
<td>5.358</td>
<td>0.000</td>
<td>0.1473 0.0453</td>
</tr>
<tr>
<td>XLAG</td>
<td>0.18129</td>
<td>0.3416E-01</td>
<td>5.307</td>
<td>0.000</td>
<td>0.2565 0.2891</td>
</tr>
<tr>
<td>X</td>
<td>0.40049</td>
<td>0.318E-01</td>
<td>12.59</td>
<td>0.000</td>
<td>0.6745 0.6615</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.15080</td>
<td>1.016</td>
<td>0.1484</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

| TEST P:1=P:2 |
TEST VALUE = 0.13797	STD. ERROR OF TEST VALUE 0.16036
ASYMPTOTIC NORMAL STATISTIC = 0.86037777	P-VALUE= 0.38958
WALD CHI-SQUARE STATISTIC = 0.74024991	WITH 1 D.F. P-VALUE= 0.38958
UPPER BOUND ON P-VALUE BY CHEBYCHEV INEQUALITY = 1.00000	

Restrictions in a Systems Estimation

In this example a set of Seemingly Unrelated Regression equations is estimated. The iteration option is not requested. The model is estimated subject to the restriction that the coefficient on variable B in equation 1 plus the coefficient on variable E in equation 2 sum to zero.

```
system 2 / restrict
ols a b c
ols d e f
restrict b:1+e:2=0
end
```
Note that SHAZAM always puts a constant term in each equation unless the \texttt{NOCONSTANT} option is specified on the \texttt{SYSTEM} command. If restrictions are required on the constant terms, you should generate your own constant by creating a variable which is always equal to 1 and then suppress the usual SHAZAM constant term with the \texttt{NOCONSTANT} option. The next example illustrates a model where two constant terms must sum to one.

\begin{verbatim}
genr const=1 system 2 / restrict noconstant ols a b c const ols d e f const restrict b:1+e:2=0 restrict const:1+const:2=1 end
\end{verbatim}

\textit{Example using a restart file}

If you use the \texttt{OUT=} and \texttt{IN=} options in a \texttt{SYSTEM} (or \texttt{NL}) problem, the first run would assign a file to a unit between from 11-49. Note that a decimal point is included after the unit number on the \texttt{FILE} command because a \texttt{BINARY} file is required. The general form is as follows:

\begin{verbatim}
file 17. restartfile sample beg end system 3 / dn iter=10 out=17 ols depvar indeps ols depvar indeps ols depvar indeps . . . stop
\end{verbatim}

In the next run, to restart where you left off, you should add the \texttt{IN=} option. The \texttt{SYSTEM} command might read as follows:

\begin{verbatim}
system 3 / dn iter=20 out=17 in=17
\end{verbatim}

In this case, the model will continue at the point it left off in the first run and update the file assigned to unit 17 until iteration 20 is reached. Do not attempt to use the \texttt{IN=} option before you have anything to \texttt{IN}put.
"Everything should be made as simple as possible, but not simpler."
Albert Einstein

The **SMOOTH** command provides options for smoothing time series by the methods of moving averages, exponential smoothing and seasonal adjustment. An introductory reference is Newbold [1995, Chapter 17].

A time series \(Y_t \) for \(t = 1, 2, \ldots, N \) can be viewed as containing a trend component \((T_t) \), a seasonal component \((S_t) \), a cyclical component \((C_t) \) and an irregular component \((I_t) \). An additive model considers:

\[
Y_t = T_t + S_t + C_t + I_t
\]

Alternatively, a multiplicative model assumes:

\[
Y_t = T_t \cdot S_t \cdot C_t \cdot I_t
\]

Moving Averages

A smoothed series can be obtained by the p-period moving average:

\[
Y_t^* = \frac{1}{p} \sum_{j=0}^{p-1} Y_{t-j}
\]

The value for \(p \) is set with the **NMA=** option. For an odd number \(p \), a centered p-period moving average is obtained by considering \(m=(p-1)/2 \) neighbors on either side of the observation:

\[
Y_t^* = \frac{1}{p} \sum_{j=-m}^{m} Y_{t+j}
\]

For an even number \(p \), consider \(m=p/2 \). A centered p-period moving average is calculated as:

\[
Y_t^* = \frac{1}{p} \left(\sum_{j=-m+1}^{m-1} Y_{t+j} + \frac{1}{2} (Y_{t-m} + Y_{t+m}) \right)
\]
Seasonal Adjustment

The centered moving averages represent the combined T and C components of the time series. For the multiplicative model, the seasonal irregular effect (labelled as **SEAS&IRREG** on the SHAZAM output) in the time series is obtained as:

\[R_t = Y_t / Y_t^* \]

For the additive model: \[R_t = Y_t - Y_t^* \]

Suppose the time series is observed for \(s \) periods per year. Seasonal factors are calculated by averaging the seasonal irregular effects over all observations in the sample that occur in the same time period of each year. With \(p = s \) the averages include \(n = N/s - 1 \) observations. For the multiplicative model, geometric averages are computed as:

\[
SF_i = \left(\prod_{t \in \text{period } i} R_t \right)^{1/n} \quad \text{or} \quad \log(SF_i) = \frac{1}{n} \left(\sum_{t \in \text{period } i} \log(R_t) \right) \quad \text{for } i = 1, 2, \ldots, s
\]

The seasonal factors are normalized to have a geometric mean of unity. For the additive model, arithmetic averages are computed as:

\[
SF_i = \frac{1}{n} \left(\sum_{t \in \text{period } i} R_t \right)
\]

In this case, the seasonal factors are normalized to have an arithmetic mean of zero.

Suppose the normalized seasonal factors are stacked in a seasonal index variable \(SI \). The seasonally adjusted time series is obtained as \(Y_t / SI_t \) for the multiplicative model, or \(Y_t - SI_t \) for the additive model.

Exponential Smoothing

The exponential moving average is calculated as:

\[
\bar{Y}_t = Y_1 \quad \text{and} \quad \bar{Y}_t = w Y_t + (1 - w) \bar{Y}_{t-1} \quad \text{for } t = 2, \ldots, N
\]
The weight \(w \) must be in the range \(0 < w < 1 \) and the default value is \(2/(1+p) \). The weight can be specified with the \texttt{WEIGHT=} option.

\textit{Hodrick-Prescott Filter}

The Hodrick-Prescott [1997] filter finds the \(T_t \) path to minimize the sum of squares:

\[
\sum_{t=1}^{N} (Y_t - T_t)^2 + \lambda \sum_{t=2}^{N-1} [(T_{t+1} - T_t) - (T_t - T_{t-1})]^2
\]

\(\lambda \) is set as the smoothing parameter.

\textbf{SMOOTH COMMAND OPTIONS}

In general, the format of the \texttt{SMOOTH} command is:

\texttt{SMOOTH var / options}

where \texttt{var} is a time series variable and \texttt{options} is a list of desired options. Options as defined for most SHAZAM commands that are available are \texttt{BEG=} and \texttt{END=}.

Additional options available on the \texttt{SMOOTH} command are:

- \texttt{ADDITIVE}
 Uses an additive model instead of the multiplicative model. If this option is used the \texttt{ARITH} option is automatically set.

- \texttt{ARITH}
 Used to compute an arithmetic average rather than a geometric average for the calculation of seasonal factors.

- \texttt{CENTRAL/ NOCENTRAL}
 By default, centered moving averages are calculated. Use \texttt{NOCENTRAL} for fully lagged moving averages.

- \texttt{HPFILTER}
 Implements the Hodrick-Prescott [1997] filter. The smoothing parameter is specified with the \texttt{LAMBDA=} option.

- \texttt{EMAVE=}
 Stores the exponential moving average in the variable specified.

- \texttt{LAMBDA=}
 Specifies the smoothing parameter for the Hodrick-Prescott filter.
DATA SMOOTHING, MOVING AVERAGES AND SEASONAL ADJUSTMENT

MAVE= Stores the moving average in the variable specified.

NMA= Specifies the number of periods (p) to use in calculating moving averages. For seasonal adjustment **NMA=** is usually the same number as **NSPAN=**.

NSPAN= Specifies the number of seasonal periods s. Use 4 for quarterly data and 12 for monthly data.

SAMAVE= Stores the seasonally adjusted time series in the variable specified.

SFAC= Stores the seasonal adjustment factors in the variable specified.

WEIGHT= Specifies the weight w in the range 0 < w < 1 to be used to compute exponential moving averages. The default is 2/(1+p) where p is the value specified with the **NMA=** option.

A temporary variable available after the **SMOOTH** command is the error code $ERR.$

EXAMPLES

This example is presented in Newbold [1995, Table 17.14, p. 702]. The data set is quarterly data on earnings per share of a corporation observed over a period of 8 years. Newbold uses a different method for calculating seasonal factors. Therefore the seasonally adjusted time series reported in the column **SA(EARNINGS)** is different from the adjusted series reported in Newbold.

| SAMPLE 1 32 |
|__READ EARNINGS / BYVAR |
| 1 VARIABLES AND 32 OBSERVATIONS STARTING AT OBS 1 |
|__SMOOTH EARNINGS / NMA=4 NSPAN=4 |
| CENTRAL MOVING AVERAGES - PERIODS= 4 NSPAN= 4 WEIGHT= 0.400 |

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>EARNINGS</th>
<th>MOVING-AVE</th>
<th>SEAS&IRREG</th>
<th>SA(EARNINGS)</th>
<th>EXP-MOV-AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30000</td>
<td>-----------</td>
<td>------------</td>
<td>0.45014</td>
<td>0.30000</td>
</tr>
<tr>
<td>2</td>
<td>0.46000</td>
<td>-----------</td>
<td>------------</td>
<td>0.44541</td>
<td>0.36400</td>
</tr>
<tr>
<td>3</td>
<td>0.34500</td>
<td>0.50750</td>
<td>0.67980</td>
<td>0.42855</td>
<td>0.35640</td>
</tr>
<tr>
<td>4</td>
<td>0.91000</td>
<td>0.52187</td>
<td>1.7437</td>
<td>0.50424</td>
<td>0.57784</td>
</tr>
<tr>
<td>5</td>
<td>0.33000</td>
<td>0.54438</td>
<td>0.60620</td>
<td>0.49515</td>
<td>0.47870</td>
</tr>
<tr>
<td>6</td>
<td>0.54500</td>
<td>0.57250</td>
<td>0.95197</td>
<td>0.52772</td>
<td>0.50522</td>
</tr>
<tr>
<td>7</td>
<td>0.44000</td>
<td>0.60938</td>
<td>0.72205</td>
<td>0.54655</td>
<td>0.47913</td>
</tr>
<tr>
<td>8</td>
<td>1.04000</td>
<td>0.64687</td>
<td>1.6077</td>
<td>0.57627</td>
<td>0.70348</td>
</tr>
<tr>
<td>9</td>
<td>0.49500</td>
<td>0.67688</td>
<td>0.73130</td>
<td>0.74273</td>
<td>0.62009</td>
</tr>
<tr>
<td>10</td>
<td>0.68000</td>
<td>0.72063</td>
<td>0.94363</td>
<td>0.65844</td>
<td>0.64405</td>
</tr>
<tr>
<td>11</td>
<td>0.54500</td>
<td>0.75812</td>
<td>0.71888</td>
<td>0.67698</td>
<td>0.60443</td>
</tr>
<tr>
<td>12</td>
<td>1.28500</td>
<td>0.78875</td>
<td>1.62920</td>
<td>0.71203</td>
<td>0.87666</td>
</tr>
<tr>
<td>13</td>
<td>0.55000</td>
<td>0.82688</td>
<td>0.66515</td>
<td>0.82525</td>
<td>0.74600</td>
</tr>
<tr>
<td>14</td>
<td>0.87000</td>
<td>0.87813</td>
<td>0.99075</td>
<td>0.84241</td>
<td>0.79560</td>
</tr>
<tr>
<td>15</td>
<td>0.66000</td>
<td>0.92000</td>
<td>0.71739</td>
<td>0.81983</td>
<td>0.74136</td>
</tr>
<tr>
<td>16</td>
<td>1.58000</td>
<td>0.94000</td>
<td>1.68093</td>
<td>0.87549</td>
<td>1.07683</td>
</tr>
<tr>
<td>17</td>
<td>0.59000</td>
<td>0.97625</td>
<td>0.60435</td>
<td>0.88527</td>
<td>0.88209</td>
</tr>
<tr>
<td>18</td>
<td>0.99000</td>
<td>1.01630</td>
<td>0.97417</td>
<td>0.95861</td>
<td>0.92525</td>
</tr>
<tr>
<td>19</td>
<td>0.83000</td>
<td>1.03750</td>
<td>0.80000</td>
<td>1.03100</td>
<td>0.88715</td>
</tr>
<tr>
<td>20</td>
<td>1.73000</td>
<td>1.04750</td>
<td>1.65167</td>
<td>0.95860</td>
<td>1.22433</td>
</tr>
<tr>
<td>21</td>
<td>0.61000</td>
<td>1.06625</td>
<td>0.57210</td>
<td>0.91528</td>
<td>0.97857</td>
</tr>
<tr>
<td>22</td>
<td>1.05000</td>
<td>1.11625</td>
<td>0.94065</td>
<td>1.01670</td>
<td>1.00711</td>
</tr>
<tr>
<td>23</td>
<td>0.92000</td>
<td>1.16625</td>
<td>0.78885</td>
<td>1.14280</td>
<td>0.97229</td>
</tr>
<tr>
<td>24</td>
<td>2.04000</td>
<td>1.20000</td>
<td>1.70000</td>
<td>1.13040</td>
<td>1.39940</td>
</tr>
<tr>
<td>25</td>
<td>0.70000</td>
<td>1.24000</td>
<td>0.56452</td>
<td>1.05030</td>
<td>1.11960</td>
</tr>
<tr>
<td>26</td>
<td>1.23000</td>
<td>1.29250</td>
<td>0.95164</td>
<td>1.19100</td>
<td>1.16380</td>
</tr>
<tr>
<td>27</td>
<td>1.06000</td>
<td>1.34250</td>
<td>0.78957</td>
<td>1.31670</td>
<td>1.12230</td>
</tr>
<tr>
<td>28</td>
<td>2.32000</td>
<td>1.38000</td>
<td>1.68120</td>
<td>1.28550</td>
<td>1.60140</td>
</tr>
<tr>
<td>29</td>
<td>0.82000</td>
<td>1.42630</td>
<td>0.57493</td>
<td>1.23040</td>
<td>1.28880</td>
</tr>
<tr>
<td>30</td>
<td>1.41000</td>
<td>1.50120</td>
<td>0.93922</td>
<td>1.36530</td>
<td>1.33730</td>
</tr>
<tr>
<td>31</td>
<td>1.25000</td>
<td>------</td>
<td>------</td>
<td>1.55270</td>
<td>1.30240</td>
</tr>
<tr>
<td>32</td>
<td>2.73000</td>
<td>------</td>
<td>------</td>
<td>1.51270</td>
<td>1.87340</td>
</tr>
</tbody>
</table>

4 SEASONAL FACTORS
1 0.66646
2 1.0327
3 0.80505
4 1.8047
"$100 million dollars is way too much to pay for Microsoft."
IBM, 1982

Four commands are available for the study of financial time series such as stock or asset prices:

- **STOCKGRAPH**: Used to calculate and chart technical indicators of stock market prices.
- **PORTFOLIO**: Used to compute risk return portfolios using Markowitz models.
- **CALL**: Used for price valuation models for call options.
- **PUT**: Used for price valuation models for put options.

Algorithms for computing technical indicators for stock market data can be found in various monthly issues of the magazine: *Technical Analysis of Stocks and Commodities*. Computational formula for Markowitz risk return frontiers are described in Campbell, Lo and MacKinlay [1997, Chapter 5]. An excellent reference for algorithms used to compute stock option prices for the **CALL** and **PUT** commands is Clewlow and Strickland [1998]. Most of the calculations follow the suggestions in this book.

For financial time series, a presentation tool is the display of graphs. The commands in this chapter prepare graphs with the GNUPLOT software as described in the **PLOTS AND GRAPHS** chapter. GNUPLOT Version 3.7 or later is required (this may not be available on all operating systems).

THE STOCKGRAPH COMMAND

Consider a financial time series P_t for $t = 1, \ldots, N$. A smoothed series is obtained by a moving average. For example, a basic indicator is a moving average calculated from daily closing stock prices. A number of alternative moving average formula are available. A simple moving average is calculated as:
where the value for \(n \) is set with the MASHORT= option. The default value is \(n = 12 \). The SOMA option calculates a second-order moving average as:

\[
P_t^{**} = \begin{cases}
 P_t^* + \frac{6}{(t+1)t} \sum_{j=0}^{t-1} P_{t-j} [t - (2 \cdot j + 1)] / 2 & \text{for } t = 1, \ldots, n \\
 P_t^* + \frac{6}{(n+1)n} \sum_{j=0}^{n-1} P_{t-j} [n - (2 \cdot j + 1)] / 2 & \text{for } t = n + 1, \ldots, N
\end{cases}
\]

An exponential moving average is computed with the EMA option. A weight \(w \) is set as \(2/(1+n) \) and the smoothed series is calculated as:

\[
\overline{P_t} = P_1 \quad \text{and} \quad \overline{P_t} = w \cdot P_t + (1 - w) \cdot \overline{P_{t-1}} \quad \text{for } t = 2, \ldots, N
\]

Bollinger Bands

An envelope or trading band is defined as an upper and lower boundary for a given moving average. For a simple moving average, Bollinger bands are calculated as:

\[
\begin{bmatrix} B_t^L \ B_t^U \end{bmatrix} = \begin{bmatrix} P_t^* - d \cdot \sqrt{V(P_t^*)} \ P_t^* + d \cdot \sqrt{V(P_t^*)} \end{bmatrix}
\]

where the value for \(d \) is specified with the BOLLINGER= option. A typical choice is \(d = 2 \). The variance is:

\[
V(P_t^*) = \begin{cases}
 \frac{1}{t} \left[\sum_{j=0}^{t-1} \left(P_{t-j}^2 - t \overline{(P_t^*)^2} \right) \right] & \text{for } t = 1, \ldots, n \\
 \frac{1}{n} \left[\sum_{j=0}^{n-1} \left(P_{t-j}^2 - n \overline{(P_t^*)^2} \right) \right] & \text{for } t = n + 1, \ldots, N
\end{cases}
\]
A feature of Bollinger bands is that during periods of relatively high volatility the bands are wider. The difference between the closing price P_t and the lower bound relative to the range of the Bollinger band is:

$$\left(P_t - B_t^L\right)/\left(B_t^U - B_t^L\right)$$

When the LIST option is used this calculation is reported in the %B column on the SHAZAM output. Another measure reported in the WIDTH column is:

$$\left(B_t^U - B_t^L\right)/P_t^*$$

Moving Average Convergence-Divergence Indicator

The moving average convergence-divergence (MACD) line is the difference between an m-period and n-period exponential moving average. The values for m and n are specified with the MALONG= and MASHORT= options respectively. The "signal" or "trigger" line is calculated as a p-period exponential moving average of this difference. The value for p is specified with the MAMACD= option. For daily data, standard choices are $m = 26$, $n = 12$ and $p = 9$.

STOCKGRAPH Command Options

In general, the format of the STOCKGRAPH command is:

STOCKGRAPH vars / options

where **vars** is a list of variable names and **options** is a list of desired options. The variable list contains the stock price information to be used for technical analysis. This can include the open, high and low prices (**open, hi, low**), the closing price (**close**), the volume measured by the number of shares traded (**volume**) and the date (**date**). The command format must conform to one of the following.

STOCKGRAPH close / options

STOCKGRAPH close date / options

STOCKGRAPH close volume / GRAPHVOL options
STOCKGRAPH close volume date / GRAPHVOL options

STOCKGRAPH open hi low close / options

STOCKGRAPH open hi low close date / options

STOCKGRAPH open hi low close volume / GRAPHVOL options

STOCKGRAPH open hi low close volume date / GRAPHVOL options

The number of variables listed determines which of the above formats is effective. Variables must be listed in the order shown above. If data on the volume of shares traded is included, the GRAPHVOL option must be specified or SHAZAM might think that the volume variable is a date.

If a date variable is included it must be a numerical value. Before the STOCKGRAPH command, the TIMEFMT and AXISFMT commands should be used to specify the format of the date variable and the date format of the x-axis labels as described in the PLOTS AND GRAPHS chapter. In addition, the AXISFMT option should also be specified on the STOCKGRAPH command.

Options as defined for most SHAZAM commands that are available are BEG= and END=. Options as defined for the GRAPH command that are available are AXISFMT and WIDE. Additional options available on the STOCKGRAPH command are:

EMA Calculates an exponential moving average instead of a simple moving average. The number of time periods in the moving average is specified with the MASHORT= option.

GRAPHDATA Graphs the financial time series data. If the variable list includes open, hi, low and close then a bar chart is displayed. A vertical line marks the low and high values. The closing price is represented by a tick mark to the right of the bar and the opening value is given by a tick mark to the left of the bar.

GRAPHMA Graphs the moving average line. This option automatically turns on the GRAPHDATA option.

GRAPHMACD Graphs the moving average convergence-divergence (MACD) lines. This option automatically turns on the GRAPHDATA option. The chart with
the MACD line and the signal line is displayed at the bottom of the graph. The chart also shows a bar chart that represents the difference between the MACD and signal lines.

GRAPHVOL
Graphs the volume of shares traded. If this option is used, the variable list must include the `volume` variable. This option automatically turns on the **GRAPHDATA** option. A volume bar chart is displayed at the bottom of the graph. The bottom of each volume bar is the value zero. The chart highlights the relative volume levels. The y-axis labels for the volume are not shown.

LIST
Lists results on the SHAZAM output.

SOMA
Calculates a second-order moving average instead of a simple moving average. The number of time periods in the moving average is specified with the **MASHORT** option. This may result in a less smooth result compared to a simple moving average that assigns equal weight to each price in the calculation.

BOLLINGER=
Specifies the number of standard deviations to use to calculate the lower and upper Bollinger bands. A common number is 2 standard deviations.

MALONG=
Specifies the number of time periods to use for a long-term moving average calculation. The default is 26 periods.

MAMACD=
Specifies the number of time periods to use for the moving average convergence-divergence trigger calculation. The default is 9 periods.

MASHORT=
Specifies the number of time periods to use for a short-term moving average calculation. The default is 12 periods.

A temporary variable available after the **STOCKGRAPH** command is the error code $ERR.

EXAMPLES

A data set is available with the price history of S&P Depository Receipts identified by the trading symbol SPY. The data set contains data on the open, high, low and close daily prices as well as the volume (number of shares traded) for the period March 3, 1999 to March 1, 2000. A chart is prepared with the SHAZAM commands below.
The variable SPY is the daily closing price for the symbol SPY.

```
sample 1 253
read (spy.dat) date open hi low spy volume
timefmt %Y%m%d
axisfmt %m/%d
```

* Set sample period from 1999/03/03 to 1999/12/31.

```
sample 1 212
stock open hi low spy volume date / graphvol axisfmt
stop
```

A daily bar chart is shown in the figure. The volume bar chart is displayed at the bottom of the figure.

THE PORTFOLIO COMMAND

Denote P_{it} for $t = 1, \ldots, N$ as prices for asset i. The percentage returns are:

$$R_{it} = 100 \cdot \left(\frac{P_{it}}{P_{i,t-1}} - 1 \right)$$

for $t = 2, \ldots, N$

The means \bar{R}_i, variances $V(R_i)$ and covariances $\text{Cov}(R_i, R_j)$ are calculated as described for the STAT command in the chapter *DESCRIPTIVE STATISTICS*. Consider r as the return
on the risk-free asset. A value for \(r \) is specified with the `RISKFREE=` option. For asset \(i \), the Sharpe ratio is defined as:

\[
\frac{\overline{R}_i - r}{\sqrt{\text{VAR}(R_i)}},
\]

The `INDEX=` option can be used to specify a variable that contains a price index for the market. Denote \(R_{mt} \) as the return on the market portfolio. The capital asset pricing model can be estimated and evaluated using the regression equation:

\[
R_{it} = \alpha_i + \beta_i R_{mt} + \varepsilon_{it}
\]

where the \(\varepsilon_{it} \) are random errors. OLS estimates of the \(\beta_i \) and \(\alpha_i \) are reported on the SHAZAM output in the columns labelled `BETA` and `ALPHA` respectively.

The problem is to find portfolio weights \(w_i \). For an expected portfolio return of \(R_p \), the minimum-variance portfolio is obtained as the solution to the problem:

\[
\min_w \sum_i \sum_j w_i w_j \text{Cov}(R_i, R_j) \quad \text{subject to} \quad \sum_i w_i \overline{R}_i = R_p \quad \text{and} \quad \sum_i w_i = 1
\]

With optimal weights \(w_i^p \) the mean return of the portfolio is:

\[
\sum_i w_i^p \overline{R}_i
\]

and the variance is:

\[
\sum_i \sum_j w_i^p w_j^p \text{Cov}(R_i, R_j)
\]

The standard deviation of the portfolio gives a measure of risk. The `PFRONTIER` option gives a listing of the means, standard deviations and Sharpe ratios for the minimum-variance portfolios. The `GRAPHFRONT` option displays a graph of the minimum-variance risk-return frontier. The problem now is to select a single optimum portfolio. An example is given later in this chapter.

The mean return and standard deviation of a user-specified portfolio can be calculated. An equal-weighted portfolio return is reported with the `EQUALWEIGHT` option. User-specified weights are recognized with the `WEIGHTS` option. Alternatively, with the `SHARES` option, the number of shares can be provided. Denote \(Q_{it} \) as the number of shares for asset \(i \). Portfolio weights are calculated as:
\[w_i^a = \frac{1}{N-1} \sum_{t=2}^{N} \left(\frac{P_{it} Q_{it}}{\sum_i P_{it} Q_{it}} \right) \]

The mean return of the portfolio is then obtained as:

\[\sum_i w_i^a \bar{R}_i \]

PORTFOLIO Command Options

In general, the formats of the PORTFOLIO command are:

- **PORTFOLIO vars / options**
- **PORTFOLIO vars weights / WEIGHTS options**
- **PORTFOLIO vars shares / SHARES options**

where `vars` is a list of variables containing stock prices or returns for each of the assets. For example, if there are 12 stocks in the portfolio there would be 12 variables. If the user knows how many shares are owned of each stock then there would also be 12 `shares` variables indicating these numbers and the `SHARES` option would be specified. Alternatively, portfolio weights of each stock can be entered in 12 `weights` variables and the `WEIGHTS` option would be specified. Finally `options` is a list of desired options.

Options as defined for most SHAZAM commands that are available are `BEG=` and `END=`. An option as defined for the `GRAPH` command that is available is `WIDE`. Additional options available on the `PORTFOLIO` command are:

- **EQUALWEIGHT** Specifies that no share or weight information is provided as the portfolio contains equal weights for each asset.
- **GRAPHDATA** Displays a scatterplot of the risks and returns for each of the stocks in the portfolio.
- **GRAPHFRONT** Plots the minimum-variance risk-return frontier for the stocks in the portfolio.
- **GRAPHLINE** Adds a line on the frontier plot from the risk-free rate of interest to the tangency point on the risk-return frontier. This will help define risk-
return options if it is possible to borrow and lend at the risk-free rate of interest. This option automatically turns on the \textsc{graphfront} option.

INRATES Specifies that the stock price data is in rates of return rather than the original stock price. The rate of return is defined as $100 \cdot \left(\frac{P_t}{P_{t-1}} - 1 \right)$.

LIST Lists the rates of return on the SHAZAM output.

PFRONTIER Prints a listing of the minimum-variance risk-return frontier.

SHARES Specifies that the command line includes names of variables containing the corresponding number of shares for each stock price variable.

WEIGHTS Specifies that the command line includes names of variables containing the corresponding weights for each stock price variable. The weights are normalized to sum to unity.

INDEX Specifies the name of a variable containing the price of a stock market index to be used in capital asset pricing model calculations.

RETURNS Specifies a variable for saving the portfolio returns for the risk-return frontier (200 values are saved), the mean returns for each stock and the returns listed in the \textsc{efficient portfolios} table on the SHAZAM output.

RISKFREE Specifies the risk-free rate of interest. It should be in percent. For example, if the risk-free rate is 5\%, enter **RISKFREE**=5. This option can be a scalar variable or a time series variable. If a time series variable is entered the risk-free rate is set to the average value.

RISKS Specifies a variable for saving the portfolio standard deviations for the risk-return frontier, the standard deviations for each stock return and the standard deviations for the portfolios listed in the \textsc{efficient portfolios} table on the SHAZAM output. Also see the **RETURNS** option.

A temporary variable available after the \textsc{portfolio} command is the error code **$ERR**.
Berndt [1991, Chapter 2] provides a data set of monthly returns for a number of companies for the period January 1978 to December 1987. From this data set, a file was prepared with returns for Mobil, IBM, Weyerhauser and Citicorp as well as the return on 30-day Treasury Bills (a measure of the risk-free return) and a value-weighted composite monthly market return based on all stocks listed at the New York and American Stock Exchanges. The SHAZAM commands below solve a portfolio selection problem.

```shazam
sample 1 120
read (p.dat) date mobil ibm weyer citcrp market rkfree /
skiplines=1
* Convert to percentages
genr mobil=100*mobil
genr ibm=100*ibm
genr weyer=100*weyer
genr citcrp=100*citcrp
* Set a risk-free rate of return
genl rf=100*(rkfree:120)
portfolio mobil ibm weyer citcrp / inrates riskfree=rf equalw &
    graphdata graphline
stop
```

SHAZAM output from the PORTFOLIO command is:

<table>
<thead>
<tr>
<th>PORTFOLIO MOBIL IBM WEYER CITCRP / INRATES RISKFREE=RF EQUALW & GRAPHDATA GRAPHLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTFOLIO ANALYSIS - RATES OF RETURN 4 ASSETS 120 OBSERVATIONS</td>
</tr>
<tr>
<td>MEAN RISKFREE RATE OF RETURN = 0.27700</td>
</tr>
<tr>
<td>VARIABLE</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>MOBIL</td>
</tr>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>WEYER</td>
</tr>
<tr>
<td>CITCRP</td>
</tr>
<tr>
<td>COVARIANCE MATRIX</td>
</tr>
<tr>
<td>MOBIL</td>
</tr>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>WEYER</td>
</tr>
<tr>
<td>CITCRP</td>
</tr>
<tr>
<td>MINIMUMVARIANCE</td>
</tr>
<tr>
<td>MEAN</td>
</tr>
<tr>
<td>VARIANCE</td>
</tr>
<tr>
<td>STDEV</td>
</tr>
<tr>
<td>SHARPE</td>
</tr>
</tbody>
</table>
PORTFOLIO WEIGHTS

<table>
<thead>
<tr>
<th>Company</th>
<th>Weight 1</th>
<th>Weight 2</th>
<th>Weight 3</th>
<th>Weight 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBIL</td>
<td>0.23486</td>
<td>0.48422</td>
<td>-1.3797</td>
<td>0.25000</td>
</tr>
<tr>
<td>IBM</td>
<td>0.59096</td>
<td>0.39925</td>
<td>1.8322</td>
<td>0.25000</td>
</tr>
<tr>
<td>WEYER</td>
<td>0.13607E-01</td>
<td>-0.10732</td>
<td>0.79655</td>
<td>0.25000</td>
</tr>
<tr>
<td>CITCRP</td>
<td>0.16057</td>
<td>0.22385</td>
<td>-0.24910</td>
<td>0.25000</td>
</tr>
</tbody>
</table>

The figure on the next page shows the minimum-variance risk-return frontier. The portfolios marked M and Z are the minimumvariance and riskfree=zero portfolios respectively. The portfolio A is the equal-weighted portfolio calculated with the equalweight option and reported on the SHAZAM output in the actual column. The straight line with an intercept at r that is tangential to the efficient frontier at point Q has a slope that is the maximum Sharpe ratio of all possible portfolios.

THE CALL AND PUT COMMANDS

A call option provides the right to buy a share of stock. A put option provides the right to sell a share of stock. A European option is only exercisable at the expiration date. In contrast, an American option is exercisable at any time before expiry.

The Black-Scholes Formula

The Black-Scholes [1973] equation gives a formula for pricing European call and European put options. This formula can also be applied for American call options on assets that do
not pay dividends since early exercise is not optimal for non-dividend paying assets. Consider an asset price \(S_t \). The inputs to the formula are:

<table>
<thead>
<tr>
<th></th>
<th>CALL / PUT command option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise price</td>
<td>(K)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>(\sigma)</td>
</tr>
<tr>
<td>Risk-free interest rate</td>
<td>(r)</td>
</tr>
<tr>
<td>Time to expiration</td>
<td>(\tau)</td>
</tr>
<tr>
<td>Dividend yield</td>
<td>(\delta)</td>
</tr>
</tbody>
</table>

The Black-Scholes calculation for the value of the call option at time \(t \) is:

\[
C_t = S_t e^{-\delta \tau} F(d_1) - K e^{-r \tau} F(d_2)
\]

where

\[
d_1 = \frac{\ln(S_t/K) + (r - \delta + \sigma^2/2) \tau}{\sigma \sqrt{\tau}} \quad \text{and} \quad d_2 = d_1 - \sigma \sqrt{\tau}
\]

\(F() \) represents the cumulative normal distribution function. The corresponding formula for pricing puts is:

\[
P_t = -S_t e^{-\delta \tau} F(-d_1) + K e^{-r \tau} F(-d_2)
\]

Implied Volatility

For a call option with price \(C \), it may be of interest to calculate the implied volatility \((\sigma) \) given the current stock price \((S_t) \), strike price \((K) \), interest rate \((r) \), time to maturity \((\tau) \), and dividend yield \((\delta) \). This is implemented with the \texttt{IMPVOL} option on the \texttt{CALL} command. In this case consider,

\[
g(\sigma) = S_t e^{-\delta \tau} F(d_1) - K e^{-r \tau} F(d_2)
\]

The problem is to find \(\sigma \) such that \(g(\sigma) = C \). The solution can be obtained by an iterative algorithm based on the Newton-Raphson method for solving a nonlinear equation as described in Benninga [1989, pp. 147-150]. The algorithm uses a starting value for \(\sigma \) as:
The formula for the iterations is:

\[\sigma(i + 1) = \sigma(i) - \frac{g(\sigma(i)) - C}{g'(\sigma)} \]

where

\[g'(\sigma) = \frac{\partial g(\sigma)}{\partial \sigma} = S_t \sqrt{\tau} f(d_1) \quad \text{and} \quad f() \quad \text{is the normal density function.} \]

The convergence criteria is:

\[|g(\sigma(i)) - C| < 0.00001 \]

Binomial Option Pricing

The option pricing problem can be approached by viewing the asset price as a random variable with a binomial distribution. This leads to a price valuation based on a multiplicative binomial tree. An alternative assumption is that the log of the asset price follows a binomial process. In this case, the price valuation uses a general additive binomial tree. Computational details of binomial option pricing methods are available in Clewlow and Strickland [1998, Chapter 2].

CALL and PUT Command Options

In general, the format of the **CALL** and **PUT** commands is:

CALL \(\text{stockprice} / \text{options} \)

or

PUT \(\text{stockprice} / \text{options} \)

where \(\text{stockprice} \) is a list of variables and \(\text{options} \) is a list of desired options. The default is to assume a European option.

Options as defined for most SHAZAM commands that are available are **BEG=** and **END=**. Additional options available on the **CALL** and **PUT** commands are:

AMERICAN \quad Specifies that the stock option is American rather than European.

BLACK \quad Use the Black-Scholes option pricing model.
EQUAL Use the equal jump model.

IMPVOL Compute the implied volatility from the Black-Scholes model. The call or put option price must be specified with `OPTIONP=`.

BARRIER The barrier level for the asset price used in pricing an American down-and-out call option.

DIVIDEND Continuous dividend yield of the asset.

NUMTIME Specifies the number of time steps in the binomial tree to use for binomial option calculations.

OPTIONP Specifies the variable containing the option prices. This is required for the `IMPVOL` option.

PREDICTP Stores the predicted option prices in the variable specified.

PREDICTV Stores the calculated implied volatilities in the variable specified.

RISKFREE Specifies the risk-free interest rate. If the interest rate is 5% enter `RISKFREE=5`. Note this differs from the use in Clewlow and Strickland where in their notation a 5% interest rate is .05.

SIGMA Specifies the standard deviation to be used which measures risk. This is commonly the historical volatility.

STRIKEPRICE Specifies the stock option strike price. It can be specified as a single number or it could be a variable with different strike prices for each stock price.

TIME Specifies the number of time periods until the stock option expires.

UP Size of proportional upward and downward move of stochastic variable.

DOWN

A temporary variable available after the `CALL` and `PUT` commands is the error code `ERR.
EXAMPLES

This example is from Clewlow and Strickland [1998, p. 21]. The problem is to price an at-the-money (ATM) European call option with a current asset price of $100. For an ATM option the exercise price is the same as the current price. Consider a one-year maturity (TIME=1) and assume the asset volatility is 20% (SIGMA=0.2) and the continuously compounded interest rate is 6 per cent per annum (RISKFREE=6). A comparison of the results for the general additive binomial tree method and the Black-Scholes method is shown in the SHAZAM output below. The binomial method provides a call option price of $11.59 and the Black-Scholes formula gives a call option price of $10.99.

```shazam
|_SAMPLE 1 1
|_GENR S=100
|_GENR K=100
|_* Binomial option pricing - the binomial tree has 3 time steps
|_GENR N=3
|_CALL S / STRIKE=K TIME=1 RISKFREE=6 SIGMA=0.2 NUMTIME=N
GENERAL ADDITIVE BINOMIAL TREE OF EUROPEAN CALL
OBS TIME STOCK STRIKE RATE N UP DOWN DIV SIG CALL IMPVOL PCALL
 1 1.00 100.00 100.00  6.00  3            0.00  0.20   0.000          11.592

|_* Black-Scholes option pricing
|_CALL S / STRIKE=K TIME=1 RISKFREE=6 SIGMA=0.2 BLACK
BLACK-SCHOLES MODEL-EUROPEAN CALL
OBS TIME STOCK STRIKE RATE N UP DOWN DIV SIG CALL IMPVOL PCALL
 1 1.00 100.00 100.00  6.00  0            0.00  0.20   0.000          10.990
```
32. LINEAR PROGRAMMING

"Programming, both linear and nonlinear, is entirely a mathematical technique. Its economic content is therefore nil."

William J. Baumol
Professor of Economics, 1977

The LP command is available to compute the solution to a linear programming problem. For discussion of linear programming methods see, for example, Baumol [1977]. The purpose is to solve for the vector x and the shadow values of the constraints for the problem:

Maximize $c'x$

subject to: $Ax \leq b$

$x \geq 0$

where A is a $M \times N$ matrix, b is a $M \times 1$ vector and c is a $N \times 1$ vector of coefficients in the objective function. The solution algorithm is a contracted simplex algorithm based on a program written by David Ryan. Note that the second set of constraints ($x \geq 0$) is automatically imposed and does not need to be specified.

SHAZAM expects the first set of constraints ($Ax \leq b$) to be in the form of less than or equal to (\leq) inequalities. However, inequalities of the form $Ax \geq b$ can be used if the signs of the elements in the A matrix and b vector are all reversed as shown in the second example below. If an exact equality constraint is required it should be specified as two inequality constraints using both \leq and \geq notation. If the problem is set up as a minimization rather than a maximization problem, the MIN option should be specified.

LP COMMAND OPTIONS

In general, the format of the LP command is:

LP $c A b / options$

where c, A and b are the vectors and matrices defined above. The available options are:
DUMP Prints information for SHAZAM consultants.

MIN Indicates that the problem is a **MIN**imization problem.

DSLACK= Saves the dual slack variables in the vector specified.

DUAL= Saves the dual solution in the vector specified.

ITER= Specifies the maximum number of iterations. The default is 15.

PRIMAL= Saves the primal solution in the vector specified.

PSLACK= Saves the primal slack variables in the vector specified.

Temporary variables available following the **LP** command are:

\[
\begin{align*}
$ERR & \quad \text{Error code} \\
$VAL & \quad \text{The value of the objective function}
\end{align*}
\]

EXAMPLES

Consider the linear programming problem:

Maximize \(x_1 + 3 \, x_2 \)

subject to: \(x_1 \leq 300 \)

\(x_2 \leq 100 \)

\(0.1 \, x_1 + 0.2 \, x_2 \leq 40 \)

\(x_1, x_2 \geq 0 \)

The SHAZAM commands to input the coefficients and solve the the maximization problem are:
The output is:

|_READ C / ROWS=2 COLS=1
1 3
|_READ A / ROWS=3 COLS=2
1 0
0 1
.1 .2
|_READ B / ROWS=3 COLS=1
300
100
40
lp c a b

The dual linear programming problem with variables $\lambda_1, \lambda_2, \ldots$ can be constructed from the primal problem. For example, the dual solution to the above problem can be obtained as the primal solution to the following minimization problem:

Minimize $300 \lambda_1 + 100 \lambda_2 + 40 \lambda_3$

subject to: $\lambda_1 + 0.1 \lambda_3 \geq 1$
\[\lambda_2 + 0.2 \lambda_3 \geq 3 \]

\[\lambda_1, \lambda_2, \lambda_3 \geq 0 \]

Since the constraints are of the form \(\geq \) rather than \(\leq \) it is necessary to reverse the signs of the coefficients in the \(A \) matrix and \(b \) vector. The SHAZAM commands for solving this problem are:

```
read c / rows=3 cols=1
300
100
40
read a / rows=2 cols=3
-1 0 -.1
0 -1 -.2
read b / rows=2 cols=1
-1
-3
lp c a b / min
```

The output is:

```
| READ C / ROWS=3 COLS=1
| 1 VARIABLES AND 3 OBSERVATIONS STARTING AT OBS 1
| ...SAMPLE RANGE IS NOW SET TO: 1 3
| READ A / ROWS=2 COLS=3
| 2 ROWS AND 3 COLUMNS, BEGINNING AT ROW 1
| READ B / ROWS=2 COLS=1
| 1 VARIABLES AND 2 OBSERVATIONS STARTING AT OBS 1

| LP C A B / MIN
NUMBER OF VARIABLES= 3 NUMBER OF CONSTRAINTS= 2
COEFFICIENTS ON VARIABLES IN OBJECTIVE FUNCTION
300.00 100.00 40.000
CONSTRAINT COEFFICIENTS AND CONSTRAINT VALUES
-1.0000 0.00000E+00 -0.10000 -1.0000
0.00000E+00 -1.0000 -0.20000 -3.0000
MINIMIZATION PROBLEM
MINIMIZED VALUE OF OBJECTIVE FUNCTION IS 500.0
PRIMAL SOLUTION
0.00000E+00 1.0000 10.000
SLACK VARIABLES
0.00000E+00 0.00000E+00
DUAL SOLUTION
200.00 100.00
DUAL SLACK VARIABLES
100.00 0.00000E+00 0.00000E+00
| STOP
```
33. QUADRATIC PROGRAMMING

"It has been found so far that, for any computation method which seems useful in relation to some set of data, another set of data can be constructed for which that method is obviously unsatisfactory."

Tjalling Charles Koopmans
Professor of Economics, 1951

The QP command is available to compute the solution to quadratic programming problems, which are characterized by an objective function of quadratic form with constraints that are linear. The aim is to solve for the N variables contained in the Nx1 vector x, which maximize a given quadratic function, while satisfying M linear equality and/or inequality constraints:

Maximize $c'x + x'Qx$

subject to: $Ax \leq b$

where c is a N x 1 vector and Q is a N x N symmetric matrix of coefficients, which describe the objective function, A is a M x N matrix and b is a M x 1 vector, which contain the constraints. For a discussion of quadratic programming see, for example, Chiang [1984, Chapter 21] or Nocedal and Wright [1999]. SHAZAM provides two methods for solving quadratic programming problems.

The POWELL method is an algorithm written by Powell [1983], which implements the projection type dual method of Goldfarb and Idnani [1983]. The algorithm solves the problem described above, with the ability to impose upper and lower bounds on the solution vector x if required, i.e.

$x_l \leq x \leq x_u,$

where x_l and x_u are N x 1 vectors. Use the options LOWER=x_l and UPPER=x_u to specify limits in vector form. Alternatively specify scalar values using the LOWSCAL= or UPSCAL= options if all variables have the same bound. The ability to apply bounds on the solution was added to Powell’s algorithm by K. Schittkowski of the University of Bayreuth [1987]. The POWELL method can be used for problems with any number of constraints.
The **STEP** method is based on an algorithm developed by Wang, Chukova and Lai [2004]. The quadratic programming problem is reduced to a least squares problem with equality constraints and non-negative variables, which can then be solved using a simple, stepwise algorithm. It is not possible to specify bounds on the solution vector, however the set of constraints

\[x \geq 0 \]

is automatically imposed and does not need to be indicated explicitly. The **STEP** method can be used with problems where \(M \leq N \), and is most suited to problems where the number of constraints is fairly small.

SHAZAM expects constraints \(Ax \leq b \) to be in the form of less than or equal to (\(\leq \)) inequalities. Inequalities of the form \(Ax \geq b \) must be rewritten with the signs of the elements in the \(A \) matrix and \(b \) vector reversed as shown in the first example below. If there are \(meq \) equality constraints, they must be contained in the first \(meq \) rows of \(A \) and \(b \). The option \texttt{MEQ=meq} must be specified, with \texttt{METHOD=POWELL}. Alternatively, the equality can be specified as two inequality constraints using both \(\leq \) and \(\geq \) notation, enabling \texttt{METHOD=STEP} to be used if desired. If the objective function is input as a minimization rather than a maximization problem:

\[
\text{Minimize} \quad c'x + x'Qx
\]

subject to: \(Ax \leq b \)

the \texttt{MIN} option should be specified. If the problem is unconstrained, this must be declared by using the option \texttt{UNCONSTR} .

The matrix \(Q \) must be positive definite in a minimization problem, indicating that the objective function is convex and that the problem has a global minimum. In maximization problems, \(-Q \) must be positive definite. In both methods, the Cholesky decomposition of \(Q \) is found. If the quadratic programming problem has a non-positive definite matrix, \texttt{METHOD=POWELL} must be used (which is the default) and option \texttt{NEGDEF} specified. In this case, the algorithm forces \(Q \) (or \(-Q \)) to be positive definite by adding a multiple of the identity matrix. Hence the objective function becomes \(c'x + x'(Q+\delta I)x \), where \(I \) is the identity matrix and \(\delta \) is the multiple added. By default, \(\delta \) is no larger than a factor of 1.1 times the smallest number required to make \(Q \) (or \(-Q \)) positive definite. This factor can be changed by using the \texttt{DIAGR=} option. The value of \(\delta \) is stored in the temporary variable $T3$. This option should be used with extreme care, as the addition of multiples of the identity matrix to matrix \(Q \) alters the objective function, and therefore quadratic programming problem, being optimized.
Where possible, the QP command in SHAZAM finds the dual solution to the given problem. The dual of the primal constrained quadratic programming problem

\[
\text{Maximize} \quad c'x + x'Qx
\]

subject to: \(Ax \leq b \)

where \(x, C, Q, A \) and \(b \) are as described above, is defined by

\[
\text{Minimize} \quad -\frac{1}{4}\lambda^T (AQ^{-1}A^T)\lambda + \lambda^T (b + \frac{1}{2}AQ^{-1}c) - \frac{1}{4}c^TQ^{-1}c
\]

subject to: \(\lambda \geq 0 \)

where \(\lambda \) is a M x 1 vector of the variables in the dual problem. For more information about the dual problem in quadratic programming see, for example, Nocedal & Wright [1999, pp. 484-485]. A warning will be thrown and the dual will not be calculated if the primal problem has any equality constraints (\(\text{MEQ}>0 \)), or explicit bounds (using options \(\text{LOWER}= \), \(\text{UPPER}= \), \(\text{LOSCAL}= \) or \(\text{UPSCAL}= \)), or if any of the options \(\text{UNCONSTR}, \text{CHOLSPEC}, \text{NEGDEF} \) or \(\text{NOPDUAL} \) are specified. If the matrix \(-AQ^{-1}A^T\) in the dual objective function is not positive definite, the dual solution will not be found.

When the SET NOOUTPUT command is in effect, all output from the QP command is suppressed, except for NOTE, WARNING and ERROR messages. To stop these messages being printed to the screen as well, use the SET NOWARN command.

QP COMMAND OPTIONS

In general, the format of the QP command is:

QP \(c Q A b / \text{options} \)

where \(c, Q, A \) and \(b \) are described above. For unconstrained problems, the command is:

QP \(c Q / \text{UNCONSTR \ options} \)

The available options are:
CHOLSPEC Used if the user wishes to supply the Cholesky decomposition of the objective matrix Q. In this case, the Cholesky decomposition must be contained in the lower half of the input matrix Q. This option is only available when both **MIN** and **METHOD=POWELL** are specified, and may not be used with the **NEGDEF** option.

DUMP Prints information for SHAZAM consultants.

MIN Indicates that the problem is a **MIN**imization problem.

NEGDEF Indicates that the quadratic matrix in the objective function, Q for a minimization problem, or $-Q$ for a maximization problem, is not positive definite. This option is only available with **METHOD=POWELL**. The user must take extreme care when using this option, as explained above.

PDUAL Calculates and prints the dual solution. This is the default. Specify **NOPDUAL** to suppress consideration of the dual problem.

UNCONSTR Must be used if a problem is unconstrained.

CONV= As defined for the **NL** command. Used when solving the least squares sub-problems when **METHOD=STEP**. The default is **CONV=10^{-6}**.

DIAGR= If **NEGDEF** and **METHOD=POWELL** are specified, the multiple of the identity matrix added to the quadratic matrix, Q for minimization, or $-Q$ for maximization problems, will be at most the value of this option times the smallest multiple that makes the matrix positive definite. The default is **DIAGR=1.1** and any number specified must be greater than 1.

DUAL= Saves the dual solution in the vector specified.

IFACT= Saves the indices of the final active constraints, applicable when using **METHOD=POWELL**.

ITER= Specifies the maximum number of iterations. The default number is **ITER=40(N+M)**.

LAGRANGE= Saves the Lagrange multipliers of the final active constraints, applicable when using **METHOD=POWELL**.
LOWER= Specifies the lower bounds of the solution and should be a vector of length N. **METHOD=STEP** may not be used with this option. If **METHOD=POWELL** and no lower bounds are specified using either LOWER= or **LOWSCAL=**, the default **LOWSCAL=-10^{12}** is applied.

LOWSCAL= Specifies a scalar which is applied as the lower bound on all variables. **METHOD=STEP** allows only **LOWSCAL=0**. If **METHOD=POWELL** and no lower bounds are specified using either LOWER= or **LOWSCAL=**, the default **LOWSCAL=-10^{12}** is applied. This option will be ignored if LOWER= is also specified.

MEQ= Indicates the number of constraints that are equality constraints. These constraints should be contained in the top rows of input matrix A and vector b. **METHOD=POWELL** is automatically used with this option.

METHOD= Specifies the method to be used for the solution of the quadratic programming problem. The default is **METHOD=POWELL**, as described by Powell [1983]. The alternative is **METHOD=STEP**, which is an implementation of the algorithm presented in Wang, Chukova and Lai [2005]. Both methods should yield nearly identical solutions, although some problems will only be solvable with **METHOD=POWELL**.

PRIMAL= Saves the primal solution in the vector specified.

UPPER= Specifies the upper bounds of the solution and should be a vector of length N. **METHOD=POWELL** is automatically used with this option. If **METHOD=POWELL** and no upper bounds are specified using either UPPER= or **UPSCAL=**, the default **UPSCAL=10^{12}** is applied.

UPSCAL= Specifies a scalar which is applied as the upper bound on all variables. **METHOD=POWELL** is automatically used with this option. If **METHOD=POWELL** and no upper bounds are specified using either UPPER= or **UPSCAL=**, the default **UPSCAL=10^{12}** is applied. This option will be ignored if UPPER= is also specified.

ZEROTOL = Used in both methods to set the threshold below which numbers are assumed to be zero. The default is **ZEROTOL=10^{-12}**.
Temporary variables available following the **QP** command are:

- **$ERR**
 Error code
- **$VAL**
 The value of the objective function
- **$T1**
 The number of variables in the problem, N.
- **$T2**
 The number of constraints in the problem, M.
- **$T3**
 The multiple of the identity matrix added to the objective function matrix to force it to be positive definite. It is only applicable when **METHOD=POWELL** and the **NEGDEF** option is specified.

EXAMPLES

Profit maximization problem

A firm makes two types of perfume, x and y. The managers want to know how much of each to produce in order to maximize profit, while adhering to some constraints imposed by their customers and suppliers. The quantities of perfume are measured in litres, so x and y can take any real value. The problem can be formulated as a quadratic programming problem, where the objective function represents profit:

Maximize

$$-3x^2 - 9y^2 + 4xy + 8y$$

subject to:

$$3x + y \geq 4$$

$$2x + 5y \leq 10$$

$$x, y \geq 0$$

The SHAZAM commands to input the objective function and constraints and solve the constrained quadratic maximization problem are:
Cost minimization problem

A distillery has a contract to supply the equivalent of ten casks of whiskey per week to a local pub. It can make two types of whiskey, x and y, and needs to minimize the costs of fulfilling the order. There are some constraints in the contract on the quantity of each type that can be supplied each week. The quadratic programming problem to minimize the cost function is as follows:
Minimize $3x^2 + 9y^2 - 4xy - 8y$

subject to: $x + y = 10$

$x - 2y \leq 0$

$x \leq 6$

$x, y \geq 1$

This problem has two variables (N=2), one equality (MEQ=1), and two inequality constraints (M=3). There are also bounds on the solution for x and y. The POWELL method must therefore be used, which is the default, but can also be set by using the option METHOD=POWELL. The SHAZAM commands to input the objective function, constraints and bounds, and solve the maximization problem are:

```
read c / rows=2 cols=1
  0
-8
read q / rows=2 cols=2
  3 -2
-2 9
read a / rows=3 cols=2
  1 1
  1 -2
  1 0
read b / rows=3 cols=1
  10
  0
  6
qp c q a b / min method=powell lowscal=1 meq=1
```

The SHAZAM output is:
_READ C2 / ROWS=2 COLS=1
 1 VARIABLES AND 2 OBSERVATIONS STARTING AT OBS 1
_READ Q2 / ROWS=2 COLS=2
 2 ROWS AND 2 COLUMNS, BEGINNING AT ROW 1
_READ A2 / ROWS=3 COLS=2
 3 ROWS AND 2 COLUMNS, BEGINNING AT ROW 1
_READ B2 / ROWS=3 COLS=1
 1 VARIABLES AND 3 OBSERVATIONS STARTING AT OBS 1
_QP C2 Q2 A2 B2 / METHOD=POWELL MIN LOWSCAL=1 MEQ=1

...NOTE..MINIMIZATION PROBLEM
...NOTE..POWELL METHOD SPECIFIED
...WARNING..NO UPPER BOUNDS HAVE BEEN SPECIFIED. USING DEFAULT VALUE FOR ALL
VARIABLES = 0.1000000E+13
...NOTE..DEFAULT VALUE OF OPTION CONV IS BEING USED, CONV = 0.1000000E-05
...NOTE..DEFAULT VALUE OF OPTION ZEROTOL IS BEING USED, ZEROTOL = 0.1000000E-11
...NOTE..CONSTRAINED PROBLEM

NUMBER OF VARIABLES= 2
TOTAL NUMBER OF CONSTRAINTS= 3, NUMBER OF EQUALITY CONSTRAINTS= 1
MINIMIZED VALUE OF OBJECTIVE FUNCTION IS 124.0000
PRIMAL SOLUTION
 6.000000 4.000000
THERE ARE 2 FINAL ACTIVE CONSTRAINTS.
INDICES OF THE FINAL ACTIVE CONSTRAINTS
 1.000000 3.000000
LAGRANGE MULTIPLIERS OF THE FINAL ACTIVE CONSTRAINTS
 -40.000000 20.000000

...WARNING..THE DUAL SOLUTION WILL NOT BE CALCULATED IF THERE ARE EQUALITY
CONSTRAINTS IN THE PRIMAL PROBLEM.
34. MATRIX MANIPULATION

"I am tired of all this thing called science...We have spent millions in that sort of thing for the last few years, and it is time it should be stopped."

Simon Cameron
U.S. Senator from Pennsylvania, 1861

The MATRIX and COPY commands can be used to create and manipulate matrices in SHAZAM. The MATRIX command will do matrix operations and create and transform matrices instead of vectors. It is similar to the GENR command except matrices are used. In contrast to the GENR command the MATRIX command ignores the current SAMPLE command. Also, SKIPIF commands have no effect on the MATRIX command.

THE MATRIX COMMAND

In general, the format of the MATRIX command is:

```
MATRIX mat = equation
```

where *mat* is the name of the matrix to be generated from an *equation*.

Operators valid on the MATRIX command are:

- Negation
- * Matrix Multiplication
- + Addition
- Subtraction
- Transpose
- Hadamard Division
- Kronecker Multiplication
- Concatenation

Regular matrix rules apply on the MATRIX command. So, when multiplying with * the first matrix to be multiplied must have the same number of columns as the second matrix has rows. Addition (+), and subtraction (−), of matrices are done element by element, so
only matrices with the same dimensions may be added to and subtracted from one another. Any matrix can be multiplied by a constant. Concatenation puts two matrices together side by side so both must have the same number of rows. Kronecker multiplication can be done with matrices of any dimension. The following examples illustrate concatenation and stacking matrices. The final example shows that the Kronecker product of a 3 x 3 matrix \(B \) and a 2 x 2 matrix \(A \) results in a 6 x 6 matrix \(K \).

```
| READ A / ROWS=3 COLS=3 LIST
| 3 ROWS AND 3 COLUMNS, BEGINNING AT ROW 1
| ...SAMPLE RANGE IS NOW SET TO: 1 3
| A
| 3 BY 3 MATRIX
| 1.000000  19.000000 -2.000000
| 354.00000  0.0  28.000000
| -3.000000  15.000000  7.000000
| READ B / ROWS=2 COLS=2 LIST
| 2 ROWS AND 2 COLUMNS, BEGINNING AT ROW 1
| B
| 2 BY 2 MATRIX
| 78.000000  592.000000
| 4.000000  -65.000000
| READ C / ROWS=3 COLS=2 LIST
| 3 ROWS AND 2 COLUMNS, BEGINNING AT ROW 1
| C
| 3 BY 2 MATRIX
| 16.000000  44.000000
| -3.000000  13.000000
| 0.0  23.000000
| * CONCATENATE A AND C SIDE BY SIDE
| MATRIX AC=A|C
| PRINT AC
| AC
| 3 BY 5 MATRIX
| 1.000000  19.000000 -2.000000 16.000000 44.000000
| 354.00000  0.0  28.000000 -3.000000 13.000000
| -3.000000  15.000000  7.0000000 0.0  23.000000
| * STACK B AND C WITH B ON TOP
| MATRIX BC=(B'|C')'
| PRINT BC
| BC
| 5 BY 2 MATRIX
| 78.000000  592.000000
| 4.000000  -65.000000
| 16.000000  44.000000
| -3.000000  13.000000
| 0.0  23.000000
| * GET KRONECKER PRODUCT OF A AND B
| MATRIX K=A@B
| FORMAT(6f10.0)
| PRINT K / FORMAT
| K
| 6 BY 6 MATRIX
| 78.  592. 1482. 11248. -156. -1184.
| 27612. 209568. 0.  0.  2184. 16576.
| 1416. -23010. 0.  0.  112. -1820.
```
Functions available with the **MATRIX** command are:

CHOL(matrix)
Cholesky's decomposition of *matrix* is performed. The *matrix* must be symmetric positive definite. For a symmetric positive definite matrix *A*, **CHOL(A)** returns a lower triangular matrix *L* such that *LL^T=A*.

DET(matrix)
Determinant of *matrix*.

DIAG(matrix)
If *matrix* is N x N the **DIAG** function will create an N x 1 vector that consists of the diagonal elements of *matrix*. If *matrix* is an N x 1 vector the **DIAG** function will create an N x N matrix with zeros off the diagonal and the vector along the diagonal.

EIGVAL(matrix)
The eigenvalues of *matrix* are computed and sorted in descending order (that is, the largest eigenvalue is first).

EIGVEC(matrix)
The eigenvectors of *matrix* are computed. The eigenvectors correspond to the eigenvalues obtained with the **EIGVAL** function and are normalized so that, for a vector *x*, \(x^T x = 1 \).

EXP(matrix)
The exponential operator is applied to each element of *matrix*.

FACT(matrix)
If the *matrix* *A* is symmetric positive definite, then **FACT(A)** factors the inverse of the matrix and returns a lower triangular matrix *P* such that *P^T P = A^{-1}.*

IDEN(ndim)
An identity matrix with *ndim* rows and columns is created.

IDEN(ndim,ndiag)
A matrix with *ndim* rows and columns is created with a diagonal of ones on the *ndiag* lower diagonal (*ndiag=1* gives an identity matrix).

INT(matrix)
Integer truncation of each element of *matrix* is performed.

INV(matrix)
Inverse of *matrix*.

LAG(matrix,n)
Each column of *matrix* is lagged *n* times.

LOG(matrix)
The natural log of each element of *matrix* is taken.

NCDF(matrix)
Normal cumulative distribution function. The probability of each element of *matrix* is taken.

NOR(nrow,ncol)
Generates a matrix of random numbers from a standard normal distribution. The number of rows and columns is specified by *nrow,ncol*.

\[
\begin{array}{rrrrr}
\end{array}
\]
RANK(\textit{matrix}) \quad \text{The rank, or the number of independent rows, of } \textit{matrix} \text{ is calculated. Calculation of the rank of a matrix is often numerically difficult especially in the case of a near singular matrix, therefore the value returned by the RANK function should be used with caution.}

SAMP(\textit{matrix},nrows) \quad \text{A new matrix with } nrows \text{ is created from the old } \textit{matrix} \text{ by random sampling with replacement.}

SEAS(nob,nseas) \quad \text{A series of seasonal dummy variables is created. The number of observations and the number of seasons are specified by } nob \text{ and } nseas.

SEAS(nob,\neg\text{ncross}) \quad \text{A series of cross-section dummy variables is created. The number of observations and the number of cross-sections are specified by } nob \text{ and } \neg\text{ncross}. \text{ It is assumed that each cross-section has the same number of observations. The dummy variables created by this function can be used with panel data sets that are arranged in the form used by the } \texttt{POOL} \text{ command.}

SIN(\textit{matrix}) \quad \text{The sine of each element of } \textit{matrix} \text{ is computed.}

SQRT(\textit{matrix}) \quad \text{The square root of each element of } \textit{matrix} \text{ is computed.}

SVD(\textit{matrix}) \quad \text{The Singular Value Decomposition of } \textit{matrix} \text{ is performed. The singular values are returned.}

SYM(\textit{matrix}) \quad \text{Creates a symmetric matrix using the lower triangle from a square full } \textit{matrix}.

TIME(nob,x) \quad \text{A vector with } nob \text{ observations is created with values equal to a time index plus } x.

TRACE(\textit{matrix}) \quad \text{The trace, or the sum of the diagonal elements, of } \textit{matrix} \text{ is calculated.}

TRI(\textit{matrix}) \quad \text{Creates a lower triangular matrix from a square full } \textit{matrix}.

UNI(nrow,ncol) \quad \text{A matrix of random numbers between 0 and 1 is created. The number of rows and columns is specified by } nrow,ncol.

VEC(\textit{matrix}) \quad \text{Stacks columns of } \textit{matrix} \text{ into a long vector.}

VEC(\textit{vector},nrows) \quad \text{Unstacks } \textit{vector} \text{ into a matrix with } nrows.

Following a \texttt{MATRIX} command the dimension of the matrix is saved in the temporary variables \texttt{ROWS} and \texttt{COLS}.

As a general rule, undefined values are set to a missing value code. For example, operations like LOG or SQRT of a negative number will generate undefined values. The missing value code has a default of −99999 but can be changed with the SET MISSVALU= option. The temporary variable $MISS stores the missing value code. The LAG function sets zero values for initial observations.

When the SET SKIPMISS command is in effect the MATRIX command will assign a missing value code to results that involve a computation with a missing observation. For more details see the chapter SET AND DISPLAY.

Although it is not a common matrix operation, SHAZAM can do multiplication and division element-by-element. These are often called Hadamard product and division (see Rao [1973, p. 30]). For example, Hadamard division is done with the command:

```
matrix m=a/b
```

In the above example each element in the matrix A is divided by each element of the matrix B and the results of this operation are put in the matrix M. Of course, A and B must have the same dimensions unless either A or B is a constant.

It is also possible to perform Hadamard products or element-by-element multiplication. This is done with the command:

```
matrix m=a/(1/b)
```

Again, A and B must have the same dimensions.

If multiplying an $N \times 1$ vector by a matrix with N rows and any number of columns, SHAZAM will do element-by-element multiplication of the $N \times 1$ vector times each column of the matrix so that the result will have the same number of columns as the original matrix.

The example below shows how to extract pieces of a matrix.

```plaintext
_SAMPLE 1 5
_READ X / ROWS=5 COLS=3 LIST
5 ROWS AND 3 COLUMNS, BEGINNING AT ROW 1

X
5 BY 3 MATRIX
1.000000 3.000000 5.000000
1.000000 1.000000 4.000000
1.000000 5.000000 6.000000
1.000000 2.000000 4.000000
```
Note that when referring to an element of a matrix there must be no embedded blanks between the variable name and the left bracket. As well, for left-hand side variables there must be no embedded blanks between the brackets.

The next example shows how to extract the upper block of a symmetric matrix.

* Run OLS and save the estimated covariance matrix in the symmetric matrix BVAR.
 \texttt{ols y x1 x2 x3 x4 x5 / cov=bvar}
 \texttt{print bvar}

* Extract the 3 x 3 upper block
 \texttt{matrix bup=bvar(1;3,1;3)}

* Print the result
 \texttt{print bup}

The next example shows the use of the \texttt{MATRIX} command to calculate the vector of OLS parameter estimates in one step. The example uses the same X matrix that was used above. The matrix calculation uses the ubiquitous formula $\hat{\beta} = (X'X)^{-1}X'Y$. When the transpose operator ('') is used it is not necessary to use the multiplication operator (*) if multiplication between the transposed matrix and the following matrix is desired. However, without the transpose operator the multiplication operator is required. The example also shows the calculation of an F-test using matrices. This formula is given in the chapter \textit{HYPOTHESIS TESTING AND CONFIDENCE INTERVALS}.

\begin{verbatim}
 1.000000 4.000000 6.000000
|_* SHOW HOW TO PICK OUT ELEMENTS, AND ROWS, OR COLUMNS OF A MATRIX
|_* CHANGE ROW 3 COLUMN 2 TO A 7
|MATRIX X(3,2)=7
|_* GET THE SECOND COLUMN OF X
|MATRIX XTWO=X(0,2)
|_PRINT XTWO / NOBYVAR
 XTWO
 3.000000
 1.000000
 7.000000
 2.000000
 4.000000
|_* GET THE FOURTH ROW OF X
|MATRIX XFOUR=X(4,0)
|_PRINT XFOUR
 XFOUR
 1 BY 3 MATRIX
 1.000000 2.000000 4.000000
|_* GET ELEMENT (4,2) OF X
|MATRIX X42=X(4,2)
|_PRINT X42
 X42
 2.000000
\end{verbatim}
It is apparent from the above SHAZAM output that many calculations can be done on one **MATRIX** command. See the chapter *PROGRAMMING IN SHAZAM* for more examples of the **MATRIX** command.

THE COPY COMMAND

The **COPY** command is used to copy vectors or matrices into other matrices. It is also possible to partition matrices, delete rows and columns, and create matrices from vectors by using the **COPY** command. The format of the **COPY** command is:

```
COPY fromvar(s) tovar / options
```

where **fromvar(s)** is either a list of vectors or a single matrix, **tovar** is the variable into which the **fromvar(s)** are to be copied and **options** is a list of desired options. The available options on the **COPY** command are:

- **FROW** = *beg;end* Specifies the rows of the **fromvar(s)** that are to be copied into the **tovar**. If this option is not specified the current **SAMPLE** command will be used.
FCOL\(=\text{beg;end}\) Specifies the columns of the *fromvar* that are to be copied into the new variable. If the old variables are a list of vectors the **FCOL** option need not be used as SHAZAM will automatically treat each vector as a column. Therefore, this option is only used if the old variable is a matrix.

TROW\(=\text{beg;end}\) Specifies the rows of the *tovar* into which the *fromvar*\(\text{s}\) are to be copied. If this option is not specified the current **SAMPLE** command will be used.

TCOL\(=\text{beg;end}\) Specifies the columns of the *tovar* into which the old variables are to be copied.

If no options are specified on the **COPY** command all the *fromvar*\(\text{s}\) will be copied into the *tovar*. It is impossible to copy from vectors and a matrix simultaneously. It is very important to specify consistent options on the **COPY** command, that is, the dimensions specified with the **COPY** options must be compatible with the dimensions of the *fromvar*\(\text{s}\) and *tovar*. It is also important to remember to use a semicolon (;) only to separate *beg* and *end* and no more than 8 characters are allowed.

If **SKIPIF** commands or the expanded form of the **SAMPLE** have been used the *tovar* matrix will be reduced in size. This is useful in deleting rows of a matrix to create a new matrix. For example, if *A* is a 15 x 5 matrix, the following commands will create a new matrix *B* which is 4 x 12 because rows 4, 10, 11 and column 3 of *A* have been deleted:

```plaintext
|_PRINT A
A
15 BY 5 MATRIX
40.05292 1170.600 97.80000 2.528130 191.50000
54.64859 2015.800 104.40000 24.91888 516.00000
40.31206 2803.300 118.00000 29.34270 729.00000
84.21099 2039.700 156.20000 27.61588 560.40000
127.5724 2256.200 172.60000 60.35945 519.90000
124.8797 2132.200 186.60000 50.61588 628.50000
96.55514 1834.100 220.90000 30.70955 537.10000
131.1601 1588.000 287.80000 60.69605 561.20000
77.02764 1749.400 319.90000 30.00972 617.20000
46.96689 1687.200 321.30000 42.50750 626.70000
100.6597 2007.700 319.60000 58.61146 737.20000
115.7467 2208.300 346.00000 46.96287 760.50000
114.5826 1656.700 456.40000 57.87651 581.40000
119.8762 1604.400 543.40000 43.22093 662.30000
105.5699 1431.800 618.30000 22.87143 583.80000
|_SAMPLE 1 3 5 9 12 15
|_COPY A:1 A:2 A:4 A:5 B
...NOTE..SOME OBSERVATIONS MAY BE SKIPPED
|_PRINT B
B
12 BY 4 MATRIX
```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40.05292</td>
<td>1170.600</td>
<td>2.528130</td>
<td>191.5000</td>
</tr>
<tr>
<td>54.64859</td>
<td>2015.800</td>
<td>24.91888</td>
<td>516.0000</td>
</tr>
<tr>
<td>40.31206</td>
<td>2803.300</td>
<td>29.34270</td>
<td>729.0000</td>
</tr>
<tr>
<td>127.5724</td>
<td>2256.200</td>
<td>60.35945</td>
<td>519.9000</td>
</tr>
<tr>
<td>124.8797</td>
<td>2132.200</td>
<td>50.61588</td>
<td>628.5000</td>
</tr>
<tr>
<td>96.55514</td>
<td>1834.100</td>
<td>30.70955</td>
<td>537.1000</td>
</tr>
<tr>
<td>131.1601</td>
<td>1588.000</td>
<td>60.69605</td>
<td>561.2000</td>
</tr>
<tr>
<td>77.02764</td>
<td>1749.400</td>
<td>30.00972</td>
<td>617.2000</td>
</tr>
<tr>
<td>115.7467</td>
<td>2208.300</td>
<td>46.96287</td>
<td>760.5000</td>
</tr>
<tr>
<td>114.5826</td>
<td>1656.700</td>
<td>57.87651</td>
<td>581.4000</td>
</tr>
<tr>
<td>119.8762</td>
<td>1604.400</td>
<td>43.22093</td>
<td>662.3000</td>
</tr>
<tr>
<td>105.5699</td>
<td>1431.800</td>
<td>22.87143</td>
<td>583.8000</td>
</tr>
</tbody>
</table>
When the U.S. government stops wasting our resources by trying to maintain the price of gold, its price will sink to...$6 an ounce rather than the current $35 an ounce.”

Henry Reuss
U.S. Senator from Wisconsin, 1967

The INDEX command computes price indexes from a set of price and quantity data on a number of commodities. To calculate an index, it is necessary to have prices and quantities for at least two commodities. Let \(p_{it} \) and \(q_{it} \) be the price and quantity for variable \(i \) in period \(t \) for \(i = 1, 2, \ldots, K \) and \(t = 1, 2, \ldots, N \). The period \(t \) price and quantity vectors that are to be aggregated into scalars are given by:

\[
q_t = (q_{1t}, q_{2t}, \ldots, q_{Kt}) \quad \text{and} \quad p_t = (p_{1t}, p_{2t}, \ldots, p_{Kt})
\]

Weighted Aggregate Price Indexes

Let \(p_{i0} \) and \(q_{i0} \) be the price and quantity for variable \(i \) in the base period. Alternative price index calculations are:

- **Laspeyres index**
 \[
 L_t = \frac{(p_t' q_0)}{(p_0' q_0)}
 \]

- **Paasche index**
 \[
 P_t = \frac{(p_t' q_t)}{(p_0' q_t)}
 \]

- **Fisher index**
 \[
 F_t = \sqrt{L_t P_t}
 \]

Chained Price Indexes

Chained price indexes are computed when the CHAIN option is specified on the INDEX command. The level of prices in period \(t \) relative to period \(t-1 \), for \(t = 2, 3, \ldots, N \), for the alternative price index formulas are:

- **Laspeyres index**
 \[
 L_t = \frac{(p_t' q_{t-1})}{(p_{t-1}' q_{t-1})}
 \]

- **Paasche index**
 \[
 P_t = \frac{(p_t' q_t)}{(p_{t-1}' q_t)}
 \]
Fisher index

\[F_t = \sqrt{L_t P_t} \]

Discrete approximation to the Divisia (Törnqvist or Translog)

\[D_t = \exp \left[\sum_{i=1}^{K} \frac{1}{2} \left(s_{it} + s_{i,t-1} \right) \log \left(\frac{p_{it}}{p_{i,t-1}} \right) \right] \]

where \(s_{it} = \left(\frac{p_{it} q_{it}}{p'_{it} q_{it}} \right) \)

These are chain links that are used in constructing the final price index series. For example, for a base period at observation 1, the Laspeyres price index series computed with the \texttt{CHAIN} option is:

\[1, \ L_2, \ L_2 L_3, \ldots, \prod_{t=2}^{N} L_t. \]

For the Paasche, Fisher or Divisia price indexes, the \(L_t \) are replaced by \(P_t, \ F_t \) or \(D_t \) respectively. If this new price series is denoted by \(R \), then the corresponding quantity series, \(Q \), is computed as:

\[Q_t = \left(\frac{p'_{it} q_{it}}{p_{it}} \right) / R_t \]

These index number formulas are explained more fully in Diewert [1978].

\begin{center}
\textbf{INDEX COMMAND OPTIONS}
\end{center}

In general, the format of the \texttt{INDEX} command is:

\texttt{INDEX p_1 q_1 p_2 q_2 p_3 q_3 \ldots / options}

where the \(p \) and \(q \) are names of the variables for the prices and quantities of the commodities.

The \texttt{OLS} options available are: \texttt{BEG=} and \texttt{END=}. Additional options available on the \texttt{INDEX} command are:

\texttt{CHAIN} \texttt{CHAIN} the Laspeyres, Paasche or Fisher indexes using the method described above. The Divisia index is always chained.
EXPEND indicates that the quantity variables measure EXPENDitures rather than quantities. SHAZAM will first divide each EXPENDiture variable by its respective price to get the quantities.

NOALTERN normally, variables are listed as described above, with p and q alternating in the list. Sometimes, it is more convenient to list all the prices followed by all the quantities. This would be the case if the prices were in one matrix and the quantities in another matrix. In this case, NOALTERN should be specified. The default is ALTERN.

NOLIST with this option the price and quantity indexes are not printed.

BASE= specifies the observation number to be used as the BASE period for the index. The value of the index in the base period will be 1.0. If the BASE= option is not specified, SHAZAM will use the first available observation as the base period. Use of SKIPIF commands is not recommended when computing Divisia indexes since the index needs to be chained.

DIVISIA= PAASCHE= LASPEYRES= FISHER= QDIVISIA= QPAASCHE= QLASPEYRES= QFISHER= these options specify the variable where the index will be stored for this SHAZAM run. Note that the options beginning with the letter Q, (QDIVISIA=, QPAASCHE=, etc.) tell SHAZAM to store the quantity in the variable specified. Those options not preceded by Q tell SHAZAM to store the price index in the variable specified. The quantity is computed residually in this option, i.e. according to the method described above. To compute quantity indexes and prices residually, interchange the role of prices and quantities in the INDEX command.

EXAMPLES

An example of the INDEX command is:

```
index pfood food pclothes clothes phouse house / expend base=23
```

In this example the quantity data is in expenditure form and observation 23 is to be used as the base year.

A problem arises if there is a zero price or quantity in any year. SHAZAM handles this problem by ignoring any commodity whenever a zero price or quantity would have to be used in a calculation. The remaining quantities are then assumed to exhaust the set for that year. A good reference for treatment of zero price and quantities is Diewert [1980].
Some users may wish to compute quantity indexes directly. To do this, reverse the p and q variables on the INDEX command.

Using data for price and quantity of cars for various corporations found in Newbold [1984, Chapter 16] the SHAZAM output obtained from the INDEX command is:

```
|INDEX P1 Q1 P2 Q2 P3 Q3 P4 Q4 / QDIVISIA=QD PAASCHE=PA
BASE PERIOD IS OBSERVATION 1
PAASCHE WILL BE STORED AS VARIABLE: PA
QDIVISIA WILL BE STORED AS VARIABLE: QD

<table>
<thead>
<tr>
<th>PRICE INDEX</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISIA</td>
<td>LASPEYRES</td>
</tr>
<tr>
<td>1 1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>2 0.994</td>
<td>0.998</td>
</tr>
<tr>
<td>3 0.979</td>
<td>0.977</td>
</tr>
<tr>
<td>4 0.999</td>
<td>0.997</td>
</tr>
<tr>
<td>5 1.045</td>
<td>1.044</td>
</tr>
<tr>
<td>6 1.048</td>
<td>1.044</td>
</tr>
<tr>
<td>7 1.029</td>
<td>1.025</td>
</tr>
<tr>
<td>8 1.075</td>
<td>1.077</td>
</tr>
<tr>
<td>9 1.100</td>
<td>1.106</td>
</tr>
<tr>
<td>10 1.109</td>
<td>1.104</td>
</tr>
<tr>
<td>11 1.198</td>
<td>1.195</td>
</tr>
</tbody>
</table>

|_PRINT QD PA

<table>
<thead>
<tr>
<th>QD</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1509.375</td>
<td>1.000000</td>
</tr>
<tr>
<td>816.0446</td>
<td>0.9979699</td>
</tr>
<tr>
<td>733.3490</td>
<td>0.9765596</td>
</tr>
<tr>
<td>747.8928</td>
<td>0.9969307</td>
</tr>
<tr>
<td>1133.374</td>
<td>1.0437272</td>
</tr>
<tr>
<td>930.5681</td>
<td>1.0442711</td>
</tr>
<tr>
<td>637.4855</td>
<td>1.0247890</td>
</tr>
<tr>
<td>1212.867</td>
<td>1.0766323</td>
</tr>
<tr>
<td>923.5981</td>
<td>1.1063542</td>
</tr>
<tr>
<td>1210.000</td>
<td>1.1035866</td>
</tr>
<tr>
<td>1540.262</td>
<td>1.1949189</td>
</tr>
<tr>
<td>1178.282</td>
<td>1.1476957</td>
</tr>
</tbody>
</table>
```

As the above example shows, all the price indexes and quantities are computed and printed. Note that the Divisia price index is computed as a chained price index but the other price indexes are computed using the weighted aggregate price index method. The Divisia quantity and the Paasche price index are saved. The BASE= option is not specified, so the base period is the first period.
36. PRINCIPAL COMPONENTS AND FACTOR ANALYSIS

"That's an amazing invention, but who would ever want to use one of them?"

Rutherford B. Hayes
U.S. President, 1876
(after seeing the telephone)

The `PC` command is available to extract principal components from a set of data and, as an option, do a varimax rotation for factor analysis. A good reference on principal components is Jolliffe [1986]. Output may include the eigenvalues, eigenvectors, components, factor matrix, and rotated factor matrix. It is possible to specify conditions under which factors are retained. Multicollinearity diagnostics including condition numbers, condition indexes, and variance proportions may also be printed. These diagnostics are discussed in Belsley, Kuh and Welsch [1980]; Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 22.3] and Judge, Hill, Griffiths, Lütkepohl and Lee [1988, pp. 872-4].

Consider a data set in the \((N \times K)\) matrix \(X\). Transformed data is:

<table>
<thead>
<tr>
<th>PC option</th>
<th>((N \times K)) matrix (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>(S_{kt} = X_{kt} - \bar{X}_k)</td>
</tr>
<tr>
<td>COR</td>
<td>(S_{kt} = \left(X_{kt} - \bar{X}k\right) / \sqrt{\sum{t=1}^{N} (X_{kt} - \bar{X}_k)^2})</td>
</tr>
<tr>
<td>RAW</td>
<td>(S_{kt} = X_{kt})</td>
</tr>
<tr>
<td>SCALE</td>
<td>(S_{kt} = X_{kt} / \sqrt{\sum_{t=1}^{N} X_{kt}^2})</td>
</tr>
</tbody>
</table>

For the matrix \(C = S'S\), \(a_k\) is a \((K \times 1)\) eigenvector of \(C\). The corresponding eigenvalue is \(\lambda_k\). The eigenvalues are arranged in descending order. The \((N \times 1)\) vectors of principal components are obtained as:

\[Z_k = S \cdot a_k \quad \text{for} \quad k = 1, \ldots, K\]

The principal components can be normalized four different ways with the use of the `NC=` option on the `PC` command. There does not appear to be much agreement in other computer programs on how the components should be normalized. SHAZAM options are:
The value: \(\frac{\lambda_1}{\sum_{i=1}^{K} \lambda_i} \)

gives the proportionate contribution of the first principal component to the total variation in the variables. The cumulative percentage of eigenvalues is:

\[
\sum_{i=1}^{k} \frac{\lambda_i}{\sum_{i=1}^{K} \lambda_i} \quad \text{for } k = 1, \ldots, K
\]

The variance reduction benchmark function (see Judge et al. [1985, p. 912]) is:

\[
100 \frac{\sum_{i=k}^{K} \left(\frac{1}{\lambda_i} \right)}{\sum_{i=1}^{K} \left(\frac{1}{\lambda_i} \right)} \quad \text{for } k = 1, \ldots, K
\]

An inspection of the eigenvectors and eigenvalues can aid in the detection of multicollinearity. The condition numbers are \(\lambda_1 / \lambda_k \) and the condition indexes are \(\sqrt{\lambda_1 / \lambda_k} \). Belsley, Kuh and Welsch [1980] suggest that condition indexes around 5 or 10 reveal weak dependencies and condition indexes around 30 to 100 demonstrate strong linear dependencies. The finding of several large condition indexes indicates more than one near exact dependency. The \texttt{PCOLLIN} option reports a table of variance-decomposition proportions. The values in the table are computed as:

\[
\phi_{kj} = \frac{a_{jk}^2 / \lambda_k}{\sum_{i=1}^{K} a_{ki}^2 / \lambda_i} \quad \text{for } k, j = 1, \ldots, K
\]

The columns in the variance proportions table sum to one. Multicollinearity is indicated if a row that is associated with an eigenvalue that has a high condition index contains two or more values of \(\phi_{kj} \) that are greater than the rule of thumb value of 0.50. This diagnostic procedure is discussed in Belsley et al. [1980, p. 112].

The model for factor analysis has the form: \(X_k = \Lambda f_k + \varepsilon_k \quad \text{for } k = 1, \ldots, K \)
where Λ is an $(N \times M)$ factor loading matrix and the f_k are $(M \times 1)$ vectors of factors. The ε_k is a zero mean error vector. As an estimate, the columns of Λ are constructed from the first M principal components as $Z_j / \sqrt{\lambda_j}$ for $j = 1, \ldots, M$. The factors f_k are then computed from OLS estimation and are listed with the PFM option on the PC command.

PC COMMAND OPTIONS

In general, the format of the PC command is:

```
PC vars / options
```

where `vars` is a list of the variables desired in the analysis, and `options` is a list of desired options. The available options are:

- **COR**
 Specifies that the analysis is to be done on the CORrelation matrix. If this option is not specified, the analysis is done on the deviations from the means cross-product matrix. Since the components are sensitive to transformations, it is important that the user be sure this option is needed. If all the variables are measured in the same units, it is probably better to use the cross-product matrix. This is often the case for economists. If the variables are all measured differently, it may be more appropriate to use the correlation matrix which, in effect, normalizes all variables. See also the SCALE option.

- **LIST**
 Lists the matrix of principal components. If there are many observations the list of all the components will be very long.

- **MAX**
 Sets the PEVEC, PFM and PRM options.

- **PCOLLIN**
 Prints the table of variance-decomposition proportions that can be used for the detection of multiCOLLINearity.

- **PEVEC**
 Prints all the EigenVECTors for the retained components. If there are many variables this option could yield a lot of costly output which may have little value.

- **PFM**
 Prints the Factor Matrix for the retained factors.
PRM Computes and Prints the Rotated factor Matrix by a varimax rotation. The method is described in Kaiser [1959]. The varimax rotation is one of the most common types of rotation.

RAW Specifies that the analysis is to be done on the RAW cross-product matrix. If this option is not specified, the analysis is done on the deviations from the means cross-product matrix. The same warnings specified for the COR option apply here.

SCALE Specifies that the analysis is to be done on a scaled cross-product matrix. The scaled matrix transforms a RAW cross-product matrix into one where the data vectors all have unit length so that the diagonals of the cross-product matrix are all equal to 1. Note that this is not the same as the COR option. If the SCALE option is not specified, the analysis is done on the deviations from the means cross-product matrix. The same warnings specified for the COR option apply here.

BEG=, END= Specifies the BEGinning and ENDing observations to be used in the analysis. This option overrides the SAMPLE command and defaults to the sample range in effect.

EVAL= Saves the EigenVALues in the vector specified. The values are sorted in descending order (that is, the largest eigenvalue is first).

EVEC= Saves the EigenVECtors in the (K x K) matrix specified. The first column of the matrix is the eigenvector that corresponds to the largest eigenvalue.

MAXFACT= Specifies the MAXimum number of FACTors to be retained. If no value of MINEIG is specified MAXFACT will be the actual number retained. If MAXFACT is not specified, all will be included.

MINEIG= Specifies the MINimum EIGenvalue allowed to be retained. If the COR option is specified, the eigenvalues will range from 0 to the number of variables in the analysis. Sometimes a convenient value is MINEIG=1. This rule of thumb does not work if the analysis is done on the cross-product matrix. The default is MINEIG=0.

NC= Specifies the Normalization Code. The options are described above and the default is NC=1.
PRINCIPAL COMPONENTS AND FACTOR ANALYSIS

PCINFO = Saves a matrix of **INFO**rmation needed for regressions on **Principal Components**.

PCOMP = Saves the matrix of Principal **COMPonents** in the \((N \times K)\) matrix specified. The first column of the matrix is the principal component that corresponds to the largest eigenvalue.

PRINCIPAL COMPONENTS REGRESSION

A consequence of multicollinearity is that the OLS estimators may have large standard errors. A solution is to consider a restricted least squares estimator. One approach is to use principal components analysis to reduce the dimensionality of the data set. A set of principal components is generated and a sub-set is selected to include as regressors in an OLS regression. The estimators are then transformed to obtain estimators for the coefficients of the original model. The resulting estimator has an interpretation as a restricted least squares estimator and therefore has smaller sampling variance compared to the unrestricted OLS estimator. Discussion with further references is available in Judge, Griffiths, Hill, Lütkepohl, and Lee [1985, Chapter 22.5]; Mundlak [1981]; Jolliffe [1986, Chapter 8] and Maddala [1992, Chapter 7.6].

The general command format for principal components regression is:

```
PC vars / PCOMP=pc PCINFO=info options
OLS depvar indeps / PCOMP=pc PCINFO=info options
```

Note that the **PCOMP=** and the **PCINFO=** options are used in both the **PC** and the **OLS** commands. In the **PC** command, they are used to store the information for later use in the **OLS** command. On the **OLS** command **indeps** is a list of variables that must contain a sub-set of the principal components saved in the matrix **pc**.

The next example illustrates principal components regression using the data set described in Judge, Griffiths, Hill, Lütkepohl, and Lee [1985, p. 930]. First, the **PC** command is used to obtain principal components and some multicollinearity diagnostics. The output **CUMULATIVE PERCENTAGE OF EIGENVALUES** shows that the first two principal components account for 97.340% of the total variation in the variables. These two components are selected for the principal components regression implemented with the **OLS** command.

```
SAMPLE 1 20
_READ (JUDGE22.DAT) X1 X2 X3 X4 X5 Y1
6 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
```
Note that the **OLS** command uses a special format for the variable names. The principal components are saved in the matrix variable `PC`. The first and second columns of this
matrix (corresponding to the first and second largest eigenvalues) are identified by $PC:1$ and $PC:2$ respectively.
"A severe depression like that of 1920-21 is outside the range of probability."
Harvard Economic Society
November 16, 1929

The **DISTRIB** command provides functions of probability distributions. For a continuous random variable X the cumulative distribution function (CDF) is defined for a value x as:

$$ F(x) = \Pr(X \leq x) $$

and the probability density function (PDF) satisfies

$$ f(x) = \frac{dF(x)}{dx} \geq 0 \quad \text{and} \quad \int_{-\infty}^{\infty} f(x) \, dx = 1 $$

The **DISTRIB** command can provide critical values for use if adequate statistical tables are unavailable. Since approximation formulas are often used to compute probabilities users may find that the numbers printed may not exactly match those found in statistical tables which are usually computed with far greater precision. However, the approximation formulas are usually accurate to at least two significant digits. In some cases either the PDF or CDF is difficult to compute and so is not calculated. A handbook for statistical distributions is Evans, Hastings and Peacock [1993].

DISTRIB COMMAND OPTIONS

In general, the format of the **DISTRIB** command is:

DISTRIB vars / options

where **vars** is a list of variables and **options** is a list of the options that are required on the specified type of distribution. The available options are:

INVERSE Computes the inverse survival function. The data in **vars** must contain probabilities. With a probability α the inverse survival function $Z(\alpha)$ is such that $\Pr(X > Z(\alpha)) = \alpha$. The relation to the inverse cumulative distribution function is $Z(\alpha) = F^{-1}(1 - \alpha)$. The **INVERSE** option is useful
for obtaining critical values. For example, when the \texttt{TYPE=CHI} option is also specified the values tabulated in chi-square tables will be obtained. The \texttt{INVERSE} option is available with \texttt{TYPE=BETA, CAUCHY, CHI, ERLANG, EXPONENTIAL, EXTREME, F, GAMMA, GEOMETRIC, IG2, LOGISTIC, NORMAL, PARETO, POWER} and \texttt{T}.

\textbf{LLF} \quad \text{Computes the Log of the Likelihood Function for the data and prints it and stores it in the temporary variable }\$\text{LLF}. \text{This option may not be used with }\texttt{TYPE=IMHOF}, \text{non-central distributions, or the }\texttt{INVERSE} \text{option.}

\textbf{NOLIST} \quad \text{Suppresses the listing of probability densities or critical values for each observation. It would normally be used only if these numbers were saved in temporary or permanent variables for later use and the listing was not required.}

\textbf{ACCURACY=} \quad \text{Specifies the level of accuracy required for the }\texttt{TYPE=DAVIES} \text{option. The default is }\texttt{ACCURACY=1E-6}. \text{Computational time can be reduced by specifying a lower value, for example }\texttt{ACCURACY=.001} \text{(that is, 1E\textasciitilde{}3).}

\textbf{BEG=, END=} \quad \text{Specifies the }\texttt{BEGinning} and \texttt{END} \text{observations to be used for the given }\texttt{DISTRIB} \text{command. If none are specified the current }\texttt{SAMPLE} \text{range is used.}

\textbf{BIGN=} \quad \text{Specifies the population size (N) for the Hypergeometric distribution. It must be specified along with the }\texttt{BIGX=} \text{and }\texttt{N=} \text{options.}

\textbf{BIGX=} \quad \text{Specifies the population number of successes (X) for the hypergeometric distribution. It must be specified along with the }\texttt{BIGN=} \text{and }\texttt{N=} \text{options.}

\textbf{C=} \quad \text{Specifies a parameter value for }\texttt{TYPE=F, BURRII, BURRIII, BURRXII, PARETO} \text{or }\texttt{POWER}.

\textbf{CDF=} \quad \text{Saves the Cumulative Distribution Function values in the variable specified.}

\textbf{CRITICAL=} \quad \text{Saves the }\texttt{CRITICAL} \text{values in the variable specified when the }\texttt{INVERSE} \text{option is being used.}
DF= Specifies the Degrees of Freedom. This option is used only with TYPE=T and TYPE=CHI.

DFVEC= Specifies a vector of N elements containing the Degrees of Freedom for the TYPE=DAVIES option.

DF1=, DF2= Specifies the Degrees of Freedom for the numerator (DF1) and the denominator (DF2) respectively. This option is used only with TYPE=F.

EIGENVAL= Specifies the vector of EIGENVALUES to be used with the TYPE=IMHOF option.

H= Specifies the Precision Parameter for the t-distribution. The default is H=1 which corresponds to the most common use of the t-distribution. For examples of situations where H≠1 see Zellner [1971] or Chapters 4 and 7 of the Judge Handbook.

K= Specifies the parameter K for TYPE=BURRII, BURRIII, BURRXII.

KURTOSIS= Specifies the population excess KURTOSIS parameter for TYPE=EDGE. The coefficient of excess kurtosis is equal to 0 for a normal distribution.

LAMBDA= Specifies the name of an N element λ vector to be used with TYPE=DAVIES.

LIMIT= Specifies the maximum number of integration terms to be used with TYPE=DAVIES. The default is 10000.

MEAN= Specifies the population MEAN value for use with TYPE=BETA, EDGE, EXPONENTIAL, NORMAL or POISSON.

N= Specifies the sample size (N) for use with TYPE=BINOMIAL or TYPE=HYPERGEO. With TYPE=DAVIES this option specifies the number of chi-square variables.

NEIGEN= Specifies the Number of EIGENVALUES to be used with TYPE=IMHOF if the entire vector is not required.

NONCEN= Specifies a vector of non-centrality parameters with the TYPE=DAVIES option. An example of the use of this option is given later in this chapter.
P= Specifies a parameter value for TYPE=BERNOULLI, BETA, BINOMIAL, ERLANG, GAMMA, GEOMETRIC, NEGBIN, PASCAL or WEIBULL. This is not needed with TYPE=BETA if MEAN= and VAR= are used.

PDF= Saves the Probability Density Function for each observation in the variable specified. It may not be used with TYPE=IMHOF.

Q= Specifies a parameter value for TYPE=BETA, ERLANG, GAMMA or WEIBULL. This is not needed with TYPE=BETA if MEAN= and VAR= are used.

S= Specifies a parameter value for TYPE=IG2. For TYPE=DAVIES, the S= option specifies the value of σ and the default value is zero.

SKEWNESS= Specifies the population SKEWNESS coefficient for TYPE=EDGE. The coefficient of skewness is equal to 0 for a normal distribution.

TYPE= Specifies the TYPE of distribution. If the type is not specified SHAZAM assumes TYPE=NORMAL. The other choices, described in detail later in this chapter, are BERNOULLI, BETA, BINOMIAL, BURRII, BURRIII, BURRXII, CAUCHY, CHI, DAVIES, EDGE, ERLANG, EXPONENTIAL, EXTREME, F, GAMMA, GEOMETRIC, HYPERGEO, IG2, IMHOF, LOGISTIC, LOGNORMAL, NEGBIN, PARETO, PASCAL, POISSON, POWER, T and WEIBULL.

V= Specifies the degrees for freedom for TYPE=IG2.

VAR= Specifies the population VARiance. This option is only used with TYPE=NORMAL, TYPE=EDGE or TYPE=BETA.

X= Specifies a parameter value for TYPE=NEGBIN or PASCAL.

There are several temporary variables available from the last observation of the previous DISTRIB command. These are $CDF, $CRIT and $PDF. For more information on temporary variables see the chapter MISCELLANEOUS COMMANDS AND INFORMATION.
The distributions available on the `TYPE=` option are described below. See Evans, Hastings and Peacock [1993] for more facts and formulas.

BERNOULLI
Bernoulli Distribution
Required option: `P=p` (the probability parameter, $0 < p < 1$). The two values are $x=1$ (success) or $x=0$ (failure).
The probability function is: $f(0) = 1 - p$; $f(1) = p$
The cumulative probability function is: $F(0) = 1 - p$; $F(1) = 1$

BETA
Beta Distribution
Required options: `P=p` and `Q=q` ($p > 0; q > 0$) or `MEAN=\mu` and `VAR=\sigma^2`.
The range is $0 \leq x \leq 1$.
The probability density function is:
$$f(x) = \frac{x^{p-1}(1-x)^{q-1}}{B(p,q)}$$
where B is the beta function.

When the `MEAN=\mu` and `VAR=\sigma^2` options are specified the parameters p and q are estimated by the method of moments as:
$$p = \mu \cdot \left[\frac{\mu (1 - \mu)}{\sigma^2} - 1\right]$$
and
$$q = (1 - \mu) \cdot \left[\frac{\mu (1 - \mu)}{\sigma^2} - 1\right]$$

BINOMIAL
Binomial Distribution
Required options: `N=n` and `P=p` ($0 \leq p \leq 1$); x is an integer and the range is $0 \leq x \leq n$.
The probability function is:
$$f(x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

BURRII
Burr Distribution
The Burr family of distributions is quite general and contains many other distributions. The type must be specified as `TYPE=BURRII`, `TYPE=BURRIII`, or `TYPE=BURRXII` (see Burr [1968] and Johnson and Kotz [1970, pp. 30-31]).
Required options: `C=c` and `K=k` (c and k are positive parameters).
The cumulative distribution functions are:
\[(II) \quad F(x) = (\exp(-x) + 1)^{-k}\]

\[(III) \quad F(x) = (x^{-c} + 1)^{-k} \quad (0 < x)\]

\[(XII) \quad F(x) = 1 - (1 + x^c)^{-k} \quad (0 < x)\]

CAUCHY
Cauchy Distribution
Same as the t-distribution with 1 degree of freedom.

CHI
Chi-Squared Distribution
Required options: `DF=v`. The range is \(0 \leq x < \infty\).
The probability density function for \(v\) degrees of freedom is:

\[
f(x) = \frac{x^{(v/2)-1} \exp(-x/2)}{2^{(v/2)} \Gamma(v/2)}
\]

DAVIES
Davies Method
Davies [1980] describes an algorithm to compute the distribution of a linear combination of chi-square random variables. Consider:

\[
Q = \sum_{j=1}^{N} \lambda_j Z_j + \sigma Z_0
\]

where \(Z_j\) are independent random variables each having a chi-square distribution with \(n_j\) degrees of freedom and non-centrality parameter \(\delta_j^2\) and \(Z_0\) has a standard normal distribution. The algorithm computes the cumulative distribution function \(F(x) = \Pr(Q \leq x)\). The Davies algorithm can be used to compute a wide variety of distributions including non-central chi-square, non-central F and the distribution of the Durbin-Watson statistic (that is, the algorithm can be used for obtaining the distribution function of quadratic forms as computed with `TYPE=IMHOF`).

Required options: `N=N` (the number of variables), `LAMBDA=\lambda` vector, `DFVEC=\lambda` vector of degrees of freedom) and `NONCEN=\delta` vector of non-centrality parameters). Other options are: `S=\sigma` (the default value of \(\sigma\) is zero), `LIMIT=\ldots` and `ACCURACY=\ldots`.

The algorithm can be used to find the distribution of the ratio of two quadratic forms. To calculate the F distribution with the Davies method the ratio of two \(\chi^2\) variables must be expressed as the sum of two \(\chi^2\) variables. That is,
\[F_{v,w} = \frac{(\chi^2_v / v)}{(\chi^2_w / w)} \quad \text{is stated as} \quad 0 = \left(\frac{\chi^2_v}{v} \right) - F_{v,w} \left(\frac{\chi^2_w}{w} \right) \]

An example of how this works is given at the end of this chapter.

EDGE

Edgeworth Approximation

The Edgeworth expansion is a method for obtaining approximations to many distributions and is described in Bickel and Doksum [1977, p. 33]. Required options: \text{MEAN}=\mu, \text{VAR}=\sigma^2, \text{SKEWNESS}=\gamma_1, \text{and KURTOSIS}=\gamma_2. The defaults with \text{TYPE}=\text{EDGE} are \text{MEAN}=0, \text{VAR}=1, \text{SKEWNESS}=0 \text{ and KURTOSIS}=0. \gamma_1 \text{ and } \gamma_2 \text{ are the coefficient of skewness and excess kurtosis of the standardized variable.}

The Edgeworth expansion for the cumulative distribution function of the standardized variable is given by:

\[
F(x) = \Phi(x) - \phi(x) \left[\frac{1}{6} \gamma_1 H_2(x) + \frac{1}{24} \gamma_2 H_3(x) + \frac{1}{72} \gamma_1^2 H_5(x) \right]
\]

where \(\phi(x) \) and \(\Phi(x) \) are the standard normal probability density and cumulative distribution functions respectively and \(H_2, H_3 \) and \(H_5 \) are Hermite polynomials defined by:

\[
H_2(x) = x^2 - 1, \quad H_3(x) = x^3 - 3x \quad \text{and} \quad H_5(x) = x^5 - 10x^3 + 15x
\]

An example of the Edgeworth approximation to the \(\chi^2 \) distribution is given in Bickel and Doksum [1977, p. 33].

ERLANG

Erlang Distribution

Required options: \text{P}=p (the scale parameter \(p > 0 \)) and \text{Q}=q (the shape parameter, \(q \) is a positive integer). The range is \(0 \leq x < \infty \). For distributional properties see the gamma distribution.

EXPONENTIAL

Exponential Distribution

Required option: \text{MEAN}=\mu. The range is \(x \geq 0 \).

The probability density function is: \(f(x) = \exp(-x/\mu) / \mu \)

The cumulative distribution function is: \(F(x) = 1 - \exp(-x/\mu) \)

For a probability \(\alpha \) the inverse survival function is:

\[Z(\alpha) = \mu \cdot \log(1/\alpha) \]
EXTREME

Extreme Value Distribution

The range is \(-\infty < x < \infty\).

The probability density function is:

\[
f(x) = \exp(-x) \cdot \exp[-\exp(-x)]
\]

The cumulative distribution function is:

\[
F(x) = \exp[-\exp(-x)]
\]

For a probability \(\alpha\) the inverse survival function is:

\[
Z(\alpha) = -\log[\log(1/(1-\alpha))]
\]

F

F-Distribution

Required options: \(\text{DF1}=v\) and \(\text{DF2}=w\). The range is \(0 \leq x < \infty\). For the non-central F-distribution, the \(C=\) option specifies the non-centrality parameter.

The probability density function for the central F-distribution with \(v\) and \(w\) degrees of freedom is:

\[
f(x) = \frac{\Gamma[(v+w)/2][v/w]^{(v/w)}x^{(v-2)/2}}{\Gamma(v/2)\Gamma(w/2)((1+v/w)x)^{(v+w)/2}}
\]

GAMMA

Gamma Distribution

Required options: \(P=p\) (the scale parameter \(p > 0\)) and \(Q=q\) (the shape parameter \(q > 0\)). The range is \(0 \leq x < \infty\).

The probability density function is:

\[
f(x) = \frac{(x/p)^{q-1}\exp(-x/p)}{p\Gamma(q)}
\]

When \(q\) is an integer the distribution is the Erlang distribution. When \(q=1\) the distribution reduces to the exponential distribution with mean \(p\).

GEOMETRIC

Geometric Distribution

Required option: \(P=p\) (the probability parameter, \(0 < p < 1\)). The range is \(x \geq 0\), \(x\) an integer (the number of trials required before the first success).

The probability function is:

\[
f(x) = p(1-p)^n
\]

The cumulative probability function is:

\[
F(x) = 1 - (1-p)^{n+1}
\]

For a probability \(\alpha\) the inverse survival function is:

\[
Z(\alpha) = \log(\alpha)/\log(1-p) - 1
\]
Note that the first success occurs on trial \(x + 1 \). An alternative form of the geometric distribution considers the number of trials up to and including the first success.

HYPERGEO
Hypergeometric Distribution
Required options: \(\text{BIGN} = N \) (number of elements in the population), \(N = n \) (the sample size) and \(\text{BIGX} = X \) (number of successes in the population). The range is \(\max[0, n - N + X] \leq x \leq \min[X, n] \). The probability of exactly \(x \) successes is:

\[
f(x) = \binom{X}{x} \binom{N - X}{n - x} \binom{N}{n}
\]

IG2
Inverted Gamma Distribution - Type 2
Required options: \(\text{S} = \hat{\sigma} \) (the estimate of \(\sigma \)) and \(\text{V} = v \) (the degrees of freedom). The probability density function is:

\[
f(\sigma) = \frac{2}{\Gamma(v/2)} \left(\frac{v\hat{\sigma}^2}{2} \right)^{v/2} \frac{1}{\sigma^{v+1}} \exp\left(-\frac{v\hat{\sigma}^2}{2\sigma^2} \right)
\]

The inverted-gamma probability density function is shown in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Equation 4.2.5]. See Chapters 4 and 7 of the *Judge Handbook* for examples of the \(\text{TYPE} = \text{IG2} \) option.

IMHOF
Imhof Method
The \(\text{TYPE} = \text{IMHOF} \) option computes the cumulative distribution function for the quadratic form in normal variables: \(Q = X'AX \). The method is described in Imhof [1961] and Koerts and Abrahamse [1968 and 1969].

Required options: \(\text{EIGENVAL} = \). The \(\text{NEIGEN} = \) option may also be used.

The cumulative distribution function is obtained by using the result:

\[
F(x) = \Pr(Q \leq x) = \Pr(R < 0) \quad \text{where} \quad R = \sum_{j=1}^{n} (\lambda_j - x) Z_j^2
\]

and \(\lambda_j \) are the nonzero eigenvalues of the matrix \(A \) and the \(Z_j \) are standard normal variables. The cumulative distribution function is:
\[
F(x) = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \varepsilon(u)}{u} \gamma(u) \, du
\]

where

\[
\varepsilon(u) = \frac{1}{2} \sum_{j=1}^{n} \arctan \left((\lambda_j - x) u \right) \quad \text{and} \quad \gamma(u) = \prod_{j=1}^{n} \left[1 + (\lambda_j - x)^2 u^2 \right]^{\frac{1}{4}}
\]

The integral is computed by numerical integration.

An example of the use of \texttt{TYPE=IMHOF} for the computation of an exact \(p \)-value for the Durbin-Watson test statistic is given in the chapter \textit{PROGRAMMING IN SHAZAM}. An alternative method is obtained with the \texttt{TYPE=DAVIES} option.

LOGISTIC

\textit{Standard Logistic Distribution}

The range is \(-\infty < x < \infty\).

The probability density function is:

\[
f(x) = \frac{\exp(x)}{[1 + \exp(x)]^2}
\]

The cumulative distribution function is:

\[
F(x) = 1 - \frac{1}{1 + \exp(x)}
\]

For a probability \(\alpha \) the inverse survival function is:

\[
Z(\alpha) = \log((1 - \alpha) / \alpha)
\]

LOGNORMAL

\textit{Lognormal Distribution}

The range is \(0 \leq x < \infty \).

The probability density function is:

\[
f(x) = \frac{1}{x (2\pi)^{1/2} \exp \left(-\frac{\log(x)^2}{2} \right)}
\]

The cumulative distribution function is:

\[
F(x) = F_Z(\log(x)) \quad \text{where} \quad F_Z \text{ is the standard normal CDF.}
\]

NEGBIN

\textit{Negative Binomial Distribution}

Required options: \texttt{P=p} (the probability of success at each trial) and \texttt{X=r} (\(0 < r < \infty \)). \(x \) is an integer and the range is \(0 \leq x < \infty \).

The probability function is:

\[
f(x) = \frac{\Gamma(r+x)}{\Gamma(r) x!} \left[1 - p \right]^{r} \left[p \right]^{x}
\]

The mean is:

\[
r \cdot \left[1 - p \right] / p
\]
When \(r \) is an integer the distribution is the Pascal distribution. When \(r = 1 \) the distribution reduces to the geometric distribution.

Suppose the random variable \(P \) has a Pascal distribution and the random variable \(B \) has a binomial distribution with parameters \(n = x + r \) and \(p \). The cumulative probability functions are related as follows:

\[
F_B(r - 1; n, p) = 1 - F_P(x; r, p)
\]

NORMAL
Normal Distribution

\(\text{TYPE=NORMAL} \) is the default distribution.
Required options: \(\text{MEAN}=\mu \) and \(\text{VAR}=\sigma^2 \) (the default is \(\text{MEAN}=0 \) and \(\text{VAR}=1 \)). The range is \(-\infty < x < \infty \).
The probability density function is:

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right]
\]

PARETO
Pareto Distribution

Required option: \(C=c \) (\(c > 0 \)). The default is \(C=1 \). The range is \(1 \leq x < \infty \).

The probability density function is:

\[
f(x) = \frac{c}{x^{c+1}}
\]

The cumulative distribution function is:

\[
F(x) = 1 - \left(\frac{1}{x} \right)^c
\]

For a probability \(\alpha \) the inverse survival function is:

\[
Z(\alpha) = \alpha^{-1/c}
\]

PASCAL
Pascal Distribution

Required options: \(P=p \) (the probability of success at each trial) and \(X=r \), \(r = 1, 2, \ldots, x \) is an integer and the range is \(0 \leq x < \infty \). For distributional properties see the negative binomial distribution.

POISSON
Poisson Distribution

Required option: \(\text{MEAN}=\lambda \), where \(\lambda \geq 0 \). The number \(x \geq 0 \) is an integer.

The probability function is:

\[
P(x) = \exp(-\lambda) \frac{\lambda^x}{x!}
\]

POWER
Standard Power Function Distribution

Required option: \(C=c \). The default is \(C=1 \). The range is \(0 \leq x \leq 1 \).

The probability density function is:

\[
f(x) = cx^{c-1}
\]

The cumulative distribution function is:

\[
F(x) = x^c
\]
For a probability α the inverse survival function is:
\[Z(\alpha) = (1 - \alpha)^{1/c} \]

Student’s t-Distribution

Required option: DF=v (the degrees of freedom). The range is $-\infty < x < \infty$.

The probability density function is:
\[f(x) = \frac{\Gamma((v + 1)/2)}{\sqrt{\pi v \Gamma(v/2)}} \frac{1}{(1 + x^2/v)^{(v+1)/2}} \]

WEIBULL

Weibull Distribution

Required options: P=b (the scale parameter $b>0$) and Q=c (the shape parameter $c > 0$). The range is $0 \leq x < \infty$.

The probability density function is:
\[f(x) = (c x^{c-1} / b^c) \exp[-(x/b)^c] \]

The cumulative distribution function is:
\[F(x) = 1 - \exp[-(x/b)^c] \]

The mean is:
\[b \Gamma((c + 1)/c) \]

For $c = 1$, the Weibull distribution is the exponential distribution with mean b.

EXAMPLES

The DISTRIB command can return p-values for test statistics. This example uses the Theil textile data set and the t-statistics for significance tests from an OLS regression are saved in the variable TR. The degrees of freedom for the OLS regression is available in the temporary variable DF. The DISTRIB command is then used to get the p-values for the t-statistics.

```plaintext
| OLS CONSUME INCOME PRICE / TRATIO=TR
OLS ESTIMATION
  17 OBSERVATIONS  DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO: 1, 17
  R-SQUARE = .9513    R-SQUARE ADJUSTED = .9443
  VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951
  STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634
  SUM OF SQUARED ERRORS-SSE = 433.31
  MEAN OF DEPENDENT VARIABLE = 134.51
  LOG OF THE LIKELIHOOD FUNCTION = -51.6471

  VARIABLE    ESTIMATED    STANDARD    T-RATIO    PARTIAL STANDARDIZED ELASTICITY
             NAME     COEFFICIENT ERROR  14 DF P-VALUE CORR. COEFFICIENT AT MEANS
  INCOME     1.0617      .2667       3.981   .001 .729     .2387     .8129
  PRICE      -1.3830     .8381E-01 -16.50   .000 -.975    -9.893    -7.846
  CONSTANT   130.71      27.09       4.824   .000 .790     .0000     .9718
```
In the above example, with the absolute value of the t-test statistic $|t|$ the p-value for a test of significance is calculated as:

$$2(1 - \Pr[t_{(14)} < |t|])$$

With the `DISTRIB` command the values $\Pr[t_{(14)} < |t|]$ are saved in the variable `CDF`. The p-values computed and reported following the `DISTRIB` command are identical to the values listed in the column labelled `P-VALUE` on the OLS estimation output.

The next example shows how to compute probability values for the chi-square distribution using the option `TYPE=CHI`. An alternative calculation is done using the Davies algorithm with `TYPE=DAVIES`.

```
|._SAMPLE 1 3
|._GENR TR=ABS(TR)
|._DISTRIB TR / TYPE=T DF=$DF$ CDF=CDF
T DISTRIBUTION DF= 14.000
VARIANCE= 1.1667 H= 1.0000

<table>
<thead>
<tr>
<th>DATA</th>
<th>PDF</th>
<th>CDF</th>
<th>1-CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW 1</td>
<td>3.9813</td>
<td>.13395E-02</td>
<td>.99932</td>
</tr>
<tr>
<td>ROW 2</td>
<td>16.501</td>
<td>.57984E-10</td>
<td>1.0000</td>
</tr>
<tr>
<td>ROW 3</td>
<td>4.8241</td>
<td>.25335E-03</td>
<td>.99986</td>
</tr>
</tbody>
</table>
|.* Now get the p-value for a 2-sided test.
|._GENR P_VAL=2*(1-CDF)
|._PRINT TR P_VAL

<table>
<thead>
<tr>
<th>TR</th>
<th>P_VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9813</td>
<td>.13652E-02</td>
</tr>
<tr>
<td>16.5006</td>
<td>.14325E-09</td>
</tr>
<tr>
<td>4.824137</td>
<td>.27004E-03</td>
</tr>
</tbody>
</table>
```

```
|.* Program to compute the chi-square distribution function.
|.* Find the probability (CHI-SQUARE<3) with 1 degree of freedom
|._SAMPLE 1 1
|._GEN1 C=3
|._DISTRIB C / TYPE=CHI DF=1
CHI-SQUARE PARAMETERS- DF= 1.0000
MEAN= 1.0000 VARIANCE= 2.0000 MODE= .00000

<table>
<thead>
<tr>
<th>DATA</th>
<th>PDF</th>
<th>CDF</th>
<th>1-CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW 1</td>
<td>3.0000</td>
<td>.51393E-01</td>
<td>.91674</td>
</tr>
<tr>
<td>.*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|.* Now use the Davies algorithm
|._GEN1 DF=1
|._GEN1 LAMB=1
|._DISTRIB C / TYPE=DAVIES N=1 DFVEC=DF LAM=LAMB
DAVIES ALGORITHM N= 1 ACCURACY= .1000000E-05 LIMIT= 10000 S= .00000
DF 1.0000
LAMB 1.0000
```
The next example computes probability values for the non-central F distribution using the option TYPE=F. An alternative calculation is also done using the Davies algorithm with TYPE=DAVIES.

```plaintext
/* PROGRAM FOR NON-CENTRAL F(1,4,5) DISTRIBUTION */
_SAMPLE 1 1
_GEN1 CRIT=16
_GEN1 DF1=1
_GEN1 DF2=4
_GEN1 C=5
_DISTRIB CRIT / TYPE=F DF1=DF1 DF2=DF2 C=C

DATA       CDF     1-CDF
C
ROW     1     3.0000      .91674      .83265E-01

/* Program for non-central F(1,4,5) distribution */
_SAMPLE 1 1
_GEN1 CRIT=16
_GEN1 DF1=1
_GEN1 DF2=4
_GEN1 C=5
_DISTRIB CRIT / TYPE=F DF1=DF1 DF2=DF2 C=C

DATA       CDF     1-CDF
CRIT
ROW     1    16.000     0.81373     0.18627

/* Now use the Davies algorithm. */
/* Since the Davies algorithm works on chi-square and F is the ratio of */
/* two chi-square variables, you must convert the statistic to the */
/* sum of chi-squares by moving the denominator to the left. */
/* That is, F=(CHI1/df1)/(CHI2/df2) becomes 0=(1/df1)CHI1-((F/df2)CHI2 */
_DIM LAMB 2 DF 2 NC 2
_GENR DF=DF1
_GENR LAMB=1/DF
_GENR NC=C
_SAMPLE 2 2
_GENR DF=DF2
_GENR LAMB=CRIT/DF2
_GENR NC=0
_SAMPLE 1 1
_GEN1 C=0
_DISTRIB C / TYPE=DAVIES N=2 DFVEC=DF LAMBDA=LAMB NONCEN=NC
DAVIES ALGORITHM N=   2 ACCURACY=  0.1000000E-05 LIMIT= 10000 S=  0.000000
DF
 1.0000       4.0000
LAMB
 1.0000      -4.0000
NC
 5.0000       0.00000
_DATA       CDF     1-CDF
C
ROW     1     0.00000     0.81375     0.18625
```
38. SORTING DATA

"Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh only 1.5 tons."

Popular Mechanics
March 1949

The SORT command allows the user to sort data. A variable which will be used to sort the data must be specified. When completed, all observations of the specified variables will be rearranged in ascending order according to the ranking in the sort variable.

SORT COMMAND OPTIONS

In general, the format of the SORT command is:

```
SORT sortvar vars / options
```

where `sortvar` is the variable name of the sorting variable, `vars` is a list of the variables to be sorted and `options` is a list of desired options. Note that only the variables listed in `sortvars` and `vars` will be sorted, that only the observations for the currently defined SAMPLE will be sorted, and that SKIPIF commands are not in effect.

The available options on the SORT command are:

- **DESC**
 - Specifies that the variables are to be sorted in DESCending (rather than ascending) order according to the ranking in the sort variable.

- **LIST**
 - LISTs the sorted data in the `vars` and the `sortvar` on the SHAZAM output.

- **BEG=, END=**
 - Specify the sample range for the given SORT command. If these are not specified, the current SAMPLE range is used.
In this example Theil’s [1971, p. 102] textile data is prepared with the most current observation first. The **SORT** command reverses the time series order of the data set.

| _SAMPLE 1 17 |
| _READ(11) YEAR CONSUME INCOME PRICE |
| 4 VARIABLES AND 17 OBSERVATIONS STARTING AT OBS 1 |
| _PRINT YEAR CONSUME INCOME PRICE |

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CONSUME</th>
<th>INCOME</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939.000</td>
<td>165.5000</td>
<td>103.8000</td>
<td>61.30000</td>
</tr>
<tr>
<td>1938.000</td>
<td>149.0000</td>
<td>101.6000</td>
<td>59.50000</td>
</tr>
<tr>
<td>1937.000</td>
<td>154.3000</td>
<td>102.4000</td>
<td>59.70000</td>
</tr>
<tr>
<td>1936.000</td>
<td>168.0000</td>
<td>97.60000</td>
<td>52.60000</td>
</tr>
<tr>
<td>1935.000</td>
<td>136.2000</td>
<td>96.40000</td>
<td>63.60000</td>
</tr>
<tr>
<td>1934.000</td>
<td>140.6000</td>
<td>95.40000</td>
<td>62.50000</td>
</tr>
<tr>
<td>1933.000</td>
<td>158.5000</td>
<td>101.7000</td>
<td>61.30000</td>
</tr>
<tr>
<td>1932.000</td>
<td>153.6000</td>
<td>105.3000</td>
<td>65.40000</td>
</tr>
<tr>
<td>1931.000</td>
<td>154.2000</td>
<td>109.3000</td>
<td>70.10000</td>
</tr>
<tr>
<td>1930.000</td>
<td>136.0000</td>
<td>112.3000</td>
<td>82.80000</td>
</tr>
<tr>
<td>1929.000</td>
<td>121.1000</td>
<td>110.8000</td>
<td>90.60000</td>
</tr>
<tr>
<td>1928.000</td>
<td>117.6000</td>
<td>109.5000</td>
<td>89.70000</td>
</tr>
<tr>
<td>1927.000</td>
<td>122.2000</td>
<td>104.9000</td>
<td>86.50000</td>
</tr>
<tr>
<td>1926.000</td>
<td>111.6000</td>
<td>104.9000</td>
<td>90.60000</td>
</tr>
<tr>
<td>1925.000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>1924.000</td>
<td>99.0000</td>
<td>98.10000</td>
<td>100.1000</td>
</tr>
<tr>
<td>1923.000</td>
<td>99.20000</td>
<td>96.70000</td>
<td>101.0000</td>
</tr>
</tbody>
</table>

| _SORT YEAR CONSUME INCOME PRICE |
| DATA HAS BEEN SORTED BY VARIABLE YEAR |
| _PRINT YEAR CONSUME INCOME PRICE |

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CONSUME</th>
<th>INCOME</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923.000</td>
<td>99.20000</td>
<td>96.70000</td>
<td>101.0000</td>
</tr>
<tr>
<td>1924.000</td>
<td>99.0000</td>
<td>98.10000</td>
<td>100.1000</td>
</tr>
<tr>
<td>1925.000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>1926.000</td>
<td>111.6000</td>
<td>104.9000</td>
<td>90.60000</td>
</tr>
<tr>
<td>1927.000</td>
<td>122.2000</td>
<td>104.9000</td>
<td>86.50000</td>
</tr>
<tr>
<td>1928.000</td>
<td>117.6000</td>
<td>109.5000</td>
<td>89.70000</td>
</tr>
<tr>
<td>1929.000</td>
<td>121.1000</td>
<td>110.8000</td>
<td>90.60000</td>
</tr>
<tr>
<td>1930.000</td>
<td>136.0000</td>
<td>112.3000</td>
<td>82.80000</td>
</tr>
<tr>
<td>1931.000</td>
<td>154.2000</td>
<td>109.3000</td>
<td>70.10000</td>
</tr>
<tr>
<td>1932.000</td>
<td>153.6000</td>
<td>105.3000</td>
<td>65.40000</td>
</tr>
<tr>
<td>1933.000</td>
<td>158.5000</td>
<td>101.7000</td>
<td>61.30000</td>
</tr>
<tr>
<td>1934.000</td>
<td>168.0000</td>
<td>97.60000</td>
<td>52.60000</td>
</tr>
<tr>
<td>1935.000</td>
<td>136.2000</td>
<td>96.40000</td>
<td>63.60000</td>
</tr>
<tr>
<td>1936.000</td>
<td>140.6000</td>
<td>95.40000</td>
<td>62.50000</td>
</tr>
<tr>
<td>1937.000</td>
<td>154.3000</td>
<td>102.4000</td>
<td>59.70000</td>
</tr>
<tr>
<td>1938.000</td>
<td>149.0000</td>
<td>101.6000</td>
<td>59.50000</td>
</tr>
<tr>
<td>1939.000</td>
<td>165.5000</td>
<td>103.8000</td>
<td>61.30000</td>
</tr>
</tbody>
</table>

It is important to realize that once the data has been sorted it can only be unsorted back to its original state if, prior to the sort, there was a variable which was in either ascending or descending order. This type of variable may be created on a **GENR** command with the **TIME(0)** function.
This chapter describes the SET command and the DISPLAY command.

SET COMMAND OPTIONS

SET commands make it possible to turn certain options on or off. In general, the format of the SET command to turn options on is:

SET *option*

To turn options off, the format of the SET command is:

SET NO *option*

where *option* is the desired option. The available options on the SET command are:

- **BATCH**

 Used in **BATCH** mode or when more extensive output is desired or when the OUTPUT unit is assigned to a file. Most modern operating systems can detect a batch run, so this option is rarely used. If the operating system is not able to do this, **BATCH** is the default.

- **BYVAR**

 Turns on the **BYVAR** option for the **PRINT** and **WRITE** commands but not for the **READ** command.

- **CC/NOCC**

 Used to turn on/off carriage control. When **SET CC** is in effect, some commands (like **OLS**) will skip to a new page. The default is **SET NOCC**. For more information on carriage control in SHAZAM see the chapter **MISCELLANEOUS COMMANDS AND INFORMATION**.

- **CONTINUE/NOCONTINUE**

 An error may terminate a **DO**-loop. The **SET CONTINUE** command forces calculations to continue.
The **DISPLAY CPUTIME** command will print the amount of computer time used in the current SHAZAM run. The **SET CPUTIME** command resets the timer to zero.

In distributed-lag models, before estimation, SHAZAM will automatically delete the number of observations equal to the longest lag. If you do not want SHAZAM to do this and prefer to adjust this yourself with the **SAMPLE** command, use **SET NODELETE**. The default is **SET DELETE**.

Commands are normally printed for each cycle through a SHAZAM DO-loop. To prevent these commands from being printed, **SET NODECHO**.

DUMP

DUMPs a lot of output which is primarily of interest to SHAZAM consultants.

Causes commands to be printed in the output. In interactive mode it may be necessary to use **NOECHO** to prevent the repetition of each command, however most modern operating systems can set this automatically. The default is **ECHO** in BATCH and TERMINAL modes and **NOECHO** in TALK mode.

The **SET NOGRAPH** command suppresses the display of gnuplot graphs that are generated with some commands. The gnuplot command and data files with the extension **.GNU** will still be created.

Creates a variable called **C$** which will contain the previous command typed. This variable can then be printed at any time after the **LASTCOM** option is **SET** by typing **PRINT C$**. This option is only useful in TALK mode.

When this option is specified, all lower case characters will be converted to upper case before processing by SHAZAM. This is the default on most computers. If you wish to distinguish upper and lower case variable names and file names in SHAZAM then use **SET NOLCUC**.

The **MAX** option can be **SET** to turn on the **MAX** option on each command. This eliminates the need to use the **MAX** option on every individual command if it is always desired.
OPTIONS Displays the value of all command OPTIONS in subsequent commands. This option is primarily of interest to SHAZAM consultants.

OUTPUT/NOOUTPUT These options are used to turn off or on the output for all following commands. SET NOOUTPUT is equivalent to putting a "?" in front of every command.

PAUSE Causes a pause to occur after each command or screen of output. This is useful when the user is working on a machine which has no pause control on its keyboard and therefore much of the output is missed as it appears on the screen. The default is SET NOPAUSE. On some systems the user can simply press RETURN on the keyboard to resume execution. However, this may not be the case on all operating systems. This option has no effect in BATCH mode.

RANFIX When RANFIX is SET the random number generator is not set by the system clock. Thus, the same set of random numbers will be obtained in repeated jobs.

SAMPLE/NOSAMPLE These options allow the use of the omitted observations in the expanded form of the SAMPLE command to be turned on and off.

SCREEN/NOSCREEN Works on some (but not all computers) to turn on and off the display of the SHAZAM output on the terminal screen when the output has been redirected to a file assigned with the FILE SCREEN command. Due to the peculiarities of various operating systems the option may or may not work. Try it and see.

SKIP/NOSKIP These options allow SKIPIF commands to be turned on and off. For an example of these options, see the chapter GENERATING VARIABLES.

SKIPMISS This option is used to turn on automatic deletion of missing observations in any data analysis or estimation command such as OLS, NL, ROBUST, STAT, FC etc. If any observation has a missing value code for any of the dependent or independent variables on that command, then the observation will be omitted for that particular command. This is less general than the SKIPIF command which will delete an observation for all subsequent commands. The SET SKIPMISS command deletes observations only if the variable is actually used. The option can be turned off with SET NOSKIPMISS.
Missing values are checked by scanning whether a variable is equal to the missing value code. The missing value code has a default of \(-99999\) but can be changed with the \texttt{SET MISSVALU=} option. The temporary variable \$MISS stores the missing value code.

When the \texttt{SET SKIPMISS} command is in effect \texttt{GENR} commands and \texttt{MATRIX} commands will assign a missing value code to results that involve a computation with a missing observation.

The \texttt{AUTO} command should also specify the \texttt{MISS} option when estimation with missing observations is considered. Estimation with missing observations in time series may not be appropriate with the \texttt{POOL, ARIMA,} or \texttt{COINT} commands or ARCH estimation with the \texttt{HET} command.

STATUS
Used to display a status line for some SHAZAM operations. The status line differs among operating systems and can include the index of the current \texttt{DO} loop, or the name of the current command. If this status line is not desired it can be turned off with \texttt{SET NOSTATUS}.

TALK
\texttt{TALK} is \texttt{SET} at the beginning of an interactive session when typing commands in interactive mode. If all commands are in a file then the user is not "talking" and should use the \texttt{TERMINAL} option instead. Most modern operating systems can detect an interactive run, so it may not be necessary to \texttt{SET} this option.

TIMER
Times each command and the CPU time is printed out after execution of each command.

TRACE
This option is primarily of interest to SHAZAM consultants. It prints the name of each subroutine as it is executed.

WARN/NOWARN
Warning messages are normally printed for illegal operations in \texttt{GENR, MATRIX, IF, SKIPIF} and \texttt{ENDIF} statements. These messages can be turned off with \texttt{SET NOWARN}.

WARNMISS/NOWARNMISS
Messages about missing observations can be turned off with \texttt{SET NOWARNMISS}.
A warning message is printed for every observation skipped by a `SKIPIF` command. There may be a large number of these warnings if the sample is large. These warnings can be turned off with `SET NOWARNSKIP`.

The `WIDE` option is used to control the line length of printed output. `WIDE` will assume that up to 120 columns are available. `NOWIDE` will try to fit all output in 80 columns. This option mainly affects the `PRINT` and `PLOT` commands. The default is `WIDE` in Batch operation and `NOWIDE` in Talk mode at a terminal.

The maximum number of characters in a command line is 255 on some computers but on others the maximum length is only 80. You can see the length for your computer with the command `DISPLAY COMLEN`. This option can be used to prevent SHAZAM from reading commands beyond a certain column. For example, for a file with sequence numbers in columns 73-80, `COMLEN=72` would be appropriate. `COMLEN=` should never be specified at a value of greater than 255 under any circumstance. Note that on all computers, commands can be continued onto additional lines if the continuation symbol (`&`) is used at the end of a line. The use of continuation lines allows a total command length on all computers of 16,384 characters.

When using the colon (`:`) function to specify a row of a matrix or a number in a vector, the default maximum number is at least 1000 or twice the maximum number of variables specified on the `SIZE` command. If a larger number is required a `SET` command such as `SET MAXCOL=1500` should be used.

Used with the `SET SKIPMISS` option to specify a missing value code. The default is `-99999`.

The `OUTUNIT=` option is `SET` when the SHAZAM output for the run is to be put into more than one file. In this case, the output files are assigned to appropriate units and addressed with the `OUTUNIT=` option. Of course, if one of the files is originally assigned to Unit 6, SHAZAM automatically outputs into this file and continues until another file is specified on a `SET OUTUNIT=` command. This option is rarely used.
RANSEED= If you wish to initialize the random number generator with a particular integer number use the `SET RANSEED=xxx` option where xxx is a positive integer. This can be used to obtain the same set of random numbers in different runs. This option should be used before any random numbers are generated in the run. `SET RANSEED=0` is the same as `SET RANFIX`.

DISPLAY COMMAND OPTIONS

The **DISPLAY** command displays the current value of any option that has been specified with the **SET** command. The format of the **DISPLAY** command is:

DISPLAY option

where `option` is the option or a list of the options previously set on a **SET** command.

In addition to the **DISPLAY** command, the **DUMP** command described in the chapter **MISCELLANEOUS COMMANDS AND INFORMATION** is useful for SHAZAM consultants who wish to see technical debugging output.
40. MISCELLANEOUS COMMANDS AND INFORMATION

"If God had wanted a Panama Canal, he would have put one here."
King Philip II of Spain
1552

This is a very important chapter that all users should read. There are various SHAZAM commands available that do not require separate chapters, but are very useful.

The **CHECKOUT** Command

The **CHECKOUT** command prints information about the machine being used. This information is primarily of interest to SHAZAM consultants. The format of the **CHECKOUT** command is:

```
CHECKOUT
```

Comment Lines

Comment lines are permitted in SHAZAM. The first column of the line must have an asterisk (*), but the rest of the line may contain anything the user desires. Thus, a comment line might look like the following:

```
* ORDINARY LEAST SQUARES REGRESSION USING TEXTILE DATA
```

This comment line will appear in the output for the run and can be used to identify which regressions were run. Comment lines may not be placed inside data to be read.

The **COMPRESS** Command

The **COMPRESS** command is used to retrieve the space of deleted variables. The **DELETE** command for deleting variables does not automatically free previously occupied space. Since there is a limited amount of memory available in a SHAZAM run the **COMPRESS** command is useful after **DELETE** commands have been used. The format of the **COMPRESS** command is:

```
COMPRESS
```
The **COMPRESS** command is not allowed in **DO**-loops or procedures.

Continuation Lines

Continuation lines are permitted in SHAZAM. An ampersand (&) is used at the end of the line to be continued. For example, if a long and complicated equation were to be given on a **GENR** command, it could be continued onto the following line in this way:

```
GENR Y=LOG(X)+P**16*T/(X-2/P)*203 &
    -6042
```

SHAZAM will remove the & from the equation and put the two pieces together. The continued line need not start in the first column. Any space typed before the ampersand will be retained in the equation. The maximum length of a command including continuation lines is 16,384 characters. Also see the **SET COMLEN** command described in the chapter **SET AND DISPLAY**.

The DELETE Command

The **DELETE** command is used to delete variables. The format of the **DELETE** command is:

```
DELETE vars
```

where *vars* is a list of variables to be deleted. All variables can be deleted with the command:

```
DELETE / ALL
```

The special **ALL_** option can be used to delete all variables with an underscore as a final character (see the chapter **SHAZAM PROCEDURES**). The command is:

```
DELETE / ALL_
```

The **ALLDATA** option can be used to delete all variables with the exception of character variables. In particular, FORMAT will not be deleted. The command is:

```
DELETE / ALLDATA
```
After *DELETE* commands, a *COMPRESS* command (described above) can be used to get back the space.

The DEMO Command

The *DEMO* command is used to teach beginners the basic commands in SHAZAM. To see a SHAZAM *DEMO*nstration type *DEMO* and follow the instructions displayed at the terminal. The *DEMO* can be restarted at any time with: *DEMO START*.

The DIM Command

The *DIM* command dimensions a vector or matrix before any data is defined. This is useful if the data for a given variable or matrix comes from several sources. In this case, *COPY* commands are useful for filling the previously dimensioned vector or matrix. The format of the *DIM* command is:

\[\text{DIM } \text{var size var size ...} \]

where *var* is the name of the vector or matrix to be dimensioned, and *size* is either one or two numbers separated by a space to indicate the size of the *var* to be dimensioned. The *size* parameter can also be a scalar variable name. If only one number is given, SHAZAM assumes the *var* is a vector. If two numbers are given, SHAZAM assumes that the *var* specified is a matrix and that the first number given specifies the rows of the matrix, and the second number specifies the columns. More than one vector or matrix can be dimensioned with a single *DIM* command, as shown above. In the example below, the vector *V* is dimensioned to 12 rows (or observations).

\[\text{DIM V 12} \]

Similarly, if a matrix *M* were to be dimensioned to 4 rows and 5 columns, the following *DIM* command would be appropriate (matrices may have a maximum of 2 dimensions):

\[\text{DIM M 4 5} \]
DO-loops

DO-loops perform repeat operations. For instructions on the use of DO-loops see the chapter PROGRAMMING IN SHAZAM.

The DUMP Command

The DUMP command prints out information that is primarily of interest to SHAZAM consultants. The format of the DUMP command is:

DUMP options

where options is a list of desired options.

There are many options available on the DUMP command, although most of these options are only useful for those who have a source listing of SHAZAM. DUMP DATA prints a chart of all the current variables, their addresses, increment, type, their number of observations and their second dimension. DUMP VNAME lists all the current variable names. DUMP KADD prints the first address of each variable. The following common block options are also available for SHAZAM consultants: ADDCOM, DATCOM, FCOM, GENCOM, INPCOM, IOCOM, LODCOM, MACOM, NLCOM, OCOM, OLSCOM, OPTCOM, OSCOM, RANCOM, SCNCOM, SYSCOM, TEMCOM, VCOM, VLCOM, VPLCOM, VTCOM, VTECOM and VTECOM. Finally, any range of data in the SHAZAM workspace can be dumped by typing the first and last word desired. For example, the command DUMP 30 50 would print words 30 through 50 of SHAZAM memory. This would normally be used in conjunction with the information obtained from the DUMP DATA command.

DUMP ASCII displays hex codes for characters in the ASCII character set.

The FILE Command

The FILE command is used to specify a particular action for a file, or assign a search path, or assign units to files. This command is described in the chapter DATA INPUT AND OUTPUT.
The **HELP Command**

Help on various SHAZAM commands and options is available on the HELP command. The format of the HELP command is:

```
HELP command
```

where `command` is any SHAZAM command name.

The **MENU Command**

The **MENU** command is useful when you are running SHAZAM interactively and you need a list of available commands. At any point in time some commands may not be valid. These are indicated by an * in the menu list.

The **NAMES Command**

The **NAMES** command will print out the NAMES of all the variables that have been read or generated in a particular SHAZAM run. It is mainly used in TALK mode to see which variables are currently defined. The format of the NAMES command is:

```
NAMES
```

or

```
NAMES *
```

which will print a table of names, the type of variable and the size of the variable.

The **PAR Command**

The **PAR** command sets the PAR value. The PAR value specifies the amount of memory (in batches of 1 Kilobyte) that is needed for the SHAZAM run. The format of the PAR command is:

```
PAR number
```
where *number* specifies the amount of memory that is needed. This command may have different machine implementations. Check the installation instructions for details on raising **PAR** for your version.

The RENAME Command

The **RENAME** command is used to rename variables that already exist in the current run. The format of the **RENAME** command is:

```
RENAME oldname newname
```

where *oldname* is the name of the variable whose name is to be changed, and *newname* is the new name to be given to that variable.

The REWIND Command

The **REWIND** command is used to rewind any unit, usually the **WRITE** unit. **REWIND** is also available as an option on the **WRITE** command. After a **REWIND** command, anything written to the specified unit will overlay what was already there. The format of the **REWIND** command is:

```
REWIND unit
```

where *unit* is the unit assigned to the **WRITE** file.

The SIZE Command

Normally, SHAZAM allows at least 300 variables. This can be changed with the **SIZE** command on most (but not all) systems. The format of the **SIZE** command is:

```
SIZE maximum
```

For example:

```
size 500
```

The **SIZE** command should be placed at the beginning of the command file. This command may have different machine implementations. Check the installation instructions for your version.
The **STOP** Command

The **STOP** command is used to indicate that the SHAZAM run is finished. If no **STOP** command is included, SHAZAM will read to the end of the command file.

Temporary Variables

Temporary variables are scalar variables that contain values from current computations. They are redefined each time a new estimation is performed. For example, temporary variables that are generally available are:

- **$N**: The number of observations
- **$ERR**: An error code
- **$PI**: The value for π ($\pi = 3.1415926535898$).
- **$MISS**: The missing value code

Note that the value for π may be printed in a shortened form on the SHAZAM output even though the number printed above is used in the calculations.

The matrix dimensions from a **MATRIX** command are in:

- **$ROWS** and **$COLS**.

The current values of each index from the **DO** command are in:

- **$DO** and **$DO2 - $DO8**.

Temporary variables available following the **TEST** command are:

- **$CHI**, **$DF1**, **$DF2**, **$F**, **$STES**, **$T**, **$VAL**, **$VAL1**, **$VAL2**, **$CT11**, **$CT22**, **$CT12**

Temporary variables available following the **DISTRIB** command are:

- **$CDF**, **$CRIT**, **$LLF** and **$PDF**.

Some temporary variables available following the **AUTO**, **BOX**, **GLS**, **MLE**, **OLS**, **POOL** or **2SLS** regression commands are:
Further description is in the chapter *ORDINARY LEAST SQUARES* and other chapters.

Temporary variables are useful for subsequent calculations. For example, suppose the adjusted R^2 (described in the chapter *A CHILD’S GUIDE TO RUNNING REGRESSIONS*) is needed. This variable could be calculated in the following way:

\[
\text{ols consume income price} \\
\text{gen1 ar2=1-}($n-1)/($n-$k)*(1-$r2)
\]

where N is the number of observations, K is the number of parameters, and R^2 is the R-SQUARE statistic. However, the adjusted R^2 is also automatically available in the temporary variable $ADR2$.

The TIME Command

The **TIME** command specifies the beginning year and frequency for a time series so that an alternate form of the **SAMPLE** command can be used. The format is:

\[
\text{TIME beg freq var}
\]

where **beg** is the beginning year, **freq** is the frequency of the data (for example, use 1 for annual data, 4 for quarterly data and 12 for monthly data), and **var** is an optional variable name to store dates. An example is:

TIME 1981 12
SAMPLE 1982.3 1984.10

When a dot "." is included, as in the example above, it is assumed to be a date according to the specification of the **TIME** command. This sets the **SAMPLE** from March of 1982 to October of 1984 for monthly data. The date can also be saved in a variable by specifying a variable name in **var** if a **SAMPLE** range for **var** has previously been defined. However, this variable should only be used for labelling output and not in calculations as it often has no useful numerical meaning.

If yearly data is used a decimal point must be included. For example, for Theil’s [1971, p. 102] Textile data you could use:
sample 1 17
time 1923 1 year
sample 1930.0 1939.0

A SAMPLE command without a decimal point is interpreted to be the observation number.

The TITLE Command

The TITLE command prints the specified title at the top of selected pages of output. The TITLE may be changed at any time, and as many times as desired. The format of the TITLE command is:

TITLE title

where title is any title the user requires.

Suppressing Output

To suppress the output from SHAZAM commands a question mark (?) may be placed in the first column of the line on which the command is typed. For example, to suppress the output from an OLS command, use:

?ols a b c / rstat

This is useful when a particular statistic is needed (say the Durbin-Watson statistic) for a subsequent test, but no other output is needed. In this case the Durbin-Watson statistic would have been stored in the temporary variable $DW, and can easily be retrieved when required.

The command SET NOOUTPUT (see the chapter SET AND DISPLAY) is equivalent to using the ? prefix on every command. This is recommended for Monte Carlo studies (an example of a Monte Carlo study is given in the chapter PROGRAMMING IN SHAZAM).

To suppress the printing of the command itself, but not the output an equal sign (=) may be placed in the first column of the line on which the command is typed. For example, to suppress the OLS command, type:

=ols a b c
To suppress both the command and the output from that command an equal sign and a question mark are placed in the first and second columns of the line on which the command is typed. To suppress both an OLS command and its output, use:

```
=？ols a b c
```

Error Codes

When an error occurs in executing a SHAZAM command an error code will often be set in the temporary variable $ERR. This variable can then be examined following each command to keep track of the type of error. If $ERR is a zero then an error code was not set. An example is:

```
het consume income price / stdresid=res
if($err.eq.0)
arima res
```

A list of error codes is available with the command HELP ERROR.
41. PROGRAMMING IN SHAZAM

"Computers are useless. They can only give you answers."

Pablo Picasso

SHAZAM provides many features to aid users who wish to write their own algorithms or procedures. This chapter provides a few programming examples. More examples are available on the internet at the SHAZAM webpage: http://www.econometrics.com/

DO-LOOPS

DO-loops provide repeat operations. The general format of **DO**-loops is:

DO dovar=start,stop,inc

commands

. . .

ENDO

The statements between the **DO** and **ENDO** commands are repeatedly executed. The **dovar** variable is the loop variable and this must be set as a symbol such as #, %, ! or ?. Other symbols on the keyboard can also be used (provided it does not have another purpose). The $ symbol must not be used as a loop variable when a **DELETE SKIP$** command is used in the **DO**-loop commands.

The **DO**-loop facility provides a numeric character substitution for the **dovar** variable. The **dovar** is incremented by the value of **inc**. If **inc** is not specified then an increment of one is set.

The **ENDIF** command is a 1 line conditional statement that can be used inside the **DO**-loop to terminate the **DO**-loop and then continue execution with the command after the **ENDO**. This is described in the chapter **GENERATING VARIABLES** and shown in the example on iterative Cochrane-Orcutt estimation later in this chapter.

The **DO**-loop execution can generate a large amount of repetitive output and this can be suppressed by using the command **SET NODOECHO** before the **DO** command. For applications like Monte Carlo studies, the command **SET NOOUTPUT** may also be useful.
DO-loops can be nested up to 18 levels. Each level must use a different DO-loop symbol. The value of the DO-loop index is contained in the temporary variable DO. The value of the second loop and following loops are contained in the temporary variables $DO2 - DO18$.

An example of the use of a DO-loop is:

```shazam
read (11) var1-var10
do # = 1,10
    genr lvar# = log(var#)
    plot lvar# var#
endo
```

This example will create 10 new variables and 10 plots of the log of each variable against each original variable. (It is assumed that the variables VAR1, VAR2,...VAR10 are in a file.) This example also shows how a series of variables with the same initial letters (in this case, VAR) can be easily specified.

The next example shows how a second level DO-loop can be used to run a total of 6 regressions. In this case the dependent variables VAR1, VAR2, and VAR3, are each run with VAR4 and then run with VAR5 as independent variables. Note that when a second level is used the first ENDO closes the DO %=4,5 loop and the second ENDO closes the DO #=1,3 loop.

```shazam
sample 1 10
read (11) var1-var5
do # = 1,3
do % = 4,5
    ols var# var%
endo
endo
done
```

The next example takes the variables X1, X2 and X3 and divides them by 2 to get X21, X22, X23 and then by 3 to get X31, X32, X33.

```shazam
do # = 2,3
do % = 1,3
    genr x#% = x%/#
endo
endo
done
```

It is also possible to increment the DO-loop by any integer. For example, DO # = 1,9,2 would set # to the numbers: 1, 3, 5, 7, 9.
Splicing Index Number Series

Suppose you have 2 overlapping price indexes where the base year has changed from 1971=100 to 1976=100 and you want to create a new spliced index with 1976=100. You can use the overlapping year, 1976, to adjust the 1971 data as follows:

```
/* Data set from: Newbold, Statistics for Business and Economics, */
/* Fourth Edition, 1995, Table 17.8, p. 685. */
/* First READ the data for the 1971 and 1976 based indexes. */
SAMPLE 1 10
READ YEAR P71 P76 / LIST
3 VARIABLES AND 10 OBSERVATIONS STARTING AT OBS 1
1971.000 100.0000 0.0
1972.000 92.20000 0.0
1973.000 131.2000 0.0
1974.000 212.0000 0.0
1975.000 243.0000 0.0
1976.000 198.5000 100.0000
1977.000 0.0 94.00000
1978.000 0.0 86.70000
1979.000 0.0 94.90000
1980.000 0.0 107.0000

SAMPLE 6 10
/* Copy the last 5 years of P76 into the SPLICE index. */
GENR SPLICE=P76
SAMPLE 1 5
/* Compute the first 5 years of P71 using 1976 base. */
GENR SPLICE=P71*P76:6/P71:6
SAMPLE 1 10
/* Now PRINT all 10 years of the SPLICED INDEX. */
PRINT YEAR SPLICE
   YEAR      SPLICE
1971.000  50.37783
1972.000  46.44836
1973.000  66.09572
1974.000 106.8010
1975.000 122.4181
1976.000 100.0000
1977.000  94.00000
1978.000  86.70000
1979.000  94.90000
1980.000 107.0000
```
Computing the Power of a Test

This example shows the use of **DO**-loops. Regression coefficients are estimated for the Theil textile data. The power function is calculated for testing the null hypothesis that the coefficient on log income is one against a 2-sided alternative. The power function is then plotted.

```shazam
| sample 1 17
| _gen lconsume=log(consume)/2.3026
| _gen lincome=log(income)/2.3026
| _gen lprice=log(price)/2.3026
|_* Run OLS and save the coefficients. Assume these are the true coefficients.
| ols lconsume lincome lprice / coef=beta
|OLS ESTIMATION
  17 OBSERVATIONS DEPENDENT VARIABLE= LCONSUME
...NOTE..SAMPLE RANGE SET TO: 1, 17

 R-SQUARE =   0.9744   R-SQUARE ADJUSTED =   0.9707
VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.18340E-03
STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.13542E-01
SUM OF SQUARED ERRORS-SSE=  0.25675E-02
MEAN OF DEPENDENT VARIABLE =   2.1221
LOG OF THE LIKELIHOOD FUNCTION =  50.6612

| VARIABLE | ESTIMATED | STANDARD | T-RATIO | PARTIAL STANDARDIZED ELASTICITY |
| NAME | COEFFICIENT | ERROR | 14 DF | P-VALUE | CORR. COEFFICIENT | AT MEANS |
| LCONSUME 1.1432 0.1560 7.328 0.000 0.891 0.3216 1.0839 |
| LPRICE 0.82884 0.3611E-01 -22.95 0.000-0.987 -1.0074 -0.7314 |
| CONSTANT 1.3739 0.3061 4.489 0.001 0.768 0.00 0.6474 |

_* Assume the OLS sigma**2 is the true value.
| gen1 sig2=$sig2
..NOTE..CURRENT VALUE OF $SIG2= 0.18340E-03
| sample 1 1
_* Set a 5% significance level.
| _gen alpha=.05
_* Find the critical value for the rejection of the null hypothesis.
| distrib alpha / type=f df1=1 df2=14 inverse
| F DISTRIBUTION- DF1=1.0000 DF2=14.000
| MEAN= 1.1667 VARIANCE= 3.5389 MODE= 0.0000

| PROBABILITY CRITICAL VALUE PDF |
| ROW | 1 | 0.50000E-01 | 4.6001 | 0.21696E-01 |
| _gen cr=$crit
..NOTE..CURRENT VALUE OF $CRIT= 4.6001

_* Dimension room for 11 values of the power function.
| _dim p 11 b 11
_* Turn off the DO-loop echoing of commands.
| _set nodoecho nooutput
|_do #=1,11
_* Let the "true" income coefficient (beta:1) vary between .5 and 1.5.
_* The other coefficients are unchanged.
| _gen beta:1=.4+.1*#
|_* Store the hypothesised values of the income coefficient in the vector b.
```
PROGRAMMING IN SHAZAM

|_genr b:#=beta:1
|_sample 1 17
|_* Calculate OLS regression results using the "true" beta and sig2.
|_* These results are then used as input for the TEST command that follows.
|_ols lconsume lincome lprice / incoef=beta insig2=sig2
|_test lincome=1
|_* Temporary variables available from the TEST command are the
|_* degrees of freedom saved in $df1 and $df2 and the chi-square
|_* test statistic saved in $chi. The latter is used as the
|_* non-centrality parameter.
|_sample 1 1
|_distrib cr / type=f df1=$df1 df2=$df2 c=$chi cdf=cdf
|_* p is the power (the probability of rejecting the false null hypothesis).
|_genr p:#=1-cdf
|_endo
|_* List the power function
|_sample 1 11
|_print b p

<table>
<thead>
<tr>
<th>B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500000</td>
<td>0.8459213</td>
</tr>
<tr>
<td>0.600000</td>
<td>0.6648456</td>
</tr>
<tr>
<td>0.700000</td>
<td>0.4330300</td>
</tr>
<tr>
<td>0.800000</td>
<td>0.2230227</td>
</tr>
<tr>
<td>0.900000</td>
<td>0.9189548E-01</td>
</tr>
<tr>
<td>1.000000</td>
<td>0.5000000E-01</td>
</tr>
<tr>
<td>1.100000</td>
<td>0.9189548E-01</td>
</tr>
<tr>
<td>1.200000</td>
<td>0.2230227</td>
</tr>
<tr>
<td>1.300000</td>
<td>0.4330300</td>
</tr>
<tr>
<td>1.400000</td>
<td>0.6648456</td>
</tr>
<tr>
<td>1.500000</td>
<td>0.8459213</td>
</tr>
</tbody>
</table>

|_graph p b / lineonly

Power function

![Power function graph](image)
In the above example, a DO-loop is set up in which 11 hypothetical coefficients are generated and 11 power values (in the variable \(P \)) are generated in conjunction with the hypothetical coefficients. Notice that the variables for the hypothetical coefficients and the power values are DIMensioned before the DO-loop to be vectors of 11 observations so that their values will be saved as they are calculated in the DO-loop. Several commands are used within the DO-loop. The OLS command is used in order to allow the subsequent TEST command since TEST commands must directly follow an estimation command. The TEST command results in the calculation of the chi-square statistic which is stored in the temporary variable CHI and used in the DISTRIB command which follows. The DISTRIB command calculates the CDF (Cumulative Distribution Function) which is used to compute the power value for the particular hypothetical coefficient. Finally, the power values are plotted against the coefficient values.

The values of the power in the variable \(P \) are the probabilities of rejecting the null hypothesis when the alternative is true. The hypothetical values of the INCOME coefficient are the alternatives. Thus, we would hope that the probability of rejecting the null hypothesis (that the coefficient on INCOME is 1) would increase as the alternative (\(B \)) moves away from 1. This turns out to be the case as can be seen from the plotted power function. Of course, the ideal power function is one in which the probability of rejecting the null hypothesis when it is true is extremely low and in which the probabilities increase rapidly as the alternatives (the true values) move away from the null value.

A good reference on the non-central F-distribution and power functions can be found in Graybill [1976, Chapter 4.3].

Ridge Regression

The output below shows the use of DO-loops for computing a ridge trace from ridge regressions for the Theil textile data. A reference is Watson and White [1976].
_do # = 2, 10
***** EXECUTION BEGINNING FOR DO LOOP # = 2
#
gen1 k: 2 = (2 - 1) / 10
#
? ols consume income price / ridge = k: 2 coef = beta: 2
#
end
#
gen1 k: 3 = (3 - 1) / 10
#
? ols consume income price / ridge = k: 3 coef = beta: 3
#
end
#
gen1 k: 4 = (4 - 1) / 10
#
? ols consume income price / ridge = k: 4 coef = beta: 4
#
end
#
gen1 k: 5 = (5 - 1) / 10
#
? ols consume income price / ridge = k: 5 coef = beta: 5
#
end
#
gen1 k: 6 = (6 - 1) / 10
#
? ols consume income price / ridge = k: 6 coef = beta: 6
#
end
#
gen1 k: 7 = (7 - 1) / 10
#
? ols consume income price / ridge = k: 7 coef = beta: 7
#
end
#
gen1 k: 8 = (8 - 1) / 10
#
? ols consume income price / ridge = k: 8 coef = beta: 8
#
end
#
gen1 k: 9 = (9 - 1) / 10
#
? ols consume income price / ridge = k: 9 coef = beta: 9
#
end
#
gen1 k: 10 = (10 - 1) / 10
#
? ols consume income price / ridge = k: 10 coef = beta: 10
#
end
***** EXECUTION FINISHED FOR DO LOOP # = 10
| _ * Transpose the beta matrix.
| _ matrix b = beta'
| _ matrix results = (k | b)
| _ print results

RESULTS
10 BY 4 MATRIX

0.000000 1.061710 -1.382985 130.7066
0.100000 0.8957645 -1.248780 137.5545
0.200000 0.7689530 -1.138775 142.2192
0.300000 0.6695782 -1.046880 145.4404
0.400000 0.5900597 -0.9689098 147.6794
0.500000 0.5252973 -0.9018889 149.2343
0.600000 0.4717498 -0.8436397 150.3036
0.700000 0.4268921 -0.7925306 151.0229
0.800000 0.3888814 -0.7473141 151.4868
0.900000 0.3563458 -0.7070192 151.7624

| _ sample 1 10
| _ * Plot the coefficients for income (b: 1) and price (b: 2) against k.
| _ * This gives the ridge trace for these coefficients.
| _ genr beta inc = b: 1
| _ genr beta pr = b: 2
| _ graph beta inc beta pr k / lineonly
In the above program, two variables, \(BETA \) and \(K \) are dimensioned to be a \(3 \times 10 \) matrix and a vector of 10 observations, respectively. \(BETA \) is used in the subsequent \texttt{DO}-loop to store the values of the coefficients for each ridge regression. \(K \) is used to store the ridge parameters used in the ridge regressions. The ridge parameter \(k \) goes from 0.1 to 0.9 in increments of 0.1. Note that the ? symbol typed before the \texttt{OLS} command is used to suppress the output of regression results. In all, 10 regressions are run and the intercept and the coefficients on each of \textit{INCOME} and \textit{PRICE} for each of these regressions are saved in the variable \(BETA \). \(BETA \) is then transposed to facilitate the plotting of the estimated coefficients on \textit{INCOME} and \textit{PRICE} against \(K \). This plot is known as the ridge trace.

An Exact \(p \)-value for the Durbin-Watson Test

The next SHAZAM run computes (the hard way) an exact \(p \)-value value for the Durbin-Watson test. This is illustrated with the Theil textile data. The SHAZAM commands reproduce the method used by SHAZAM with the \texttt{DWPVALUE} option on the \texttt{OLS} command. A useful discussion is in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, p. 322]. The Imhof technique applied in Koerts and Abrahamse [1968 and 1969] is used to obtain the distribution of the Durbin-Watson test statistic. Other methods are discussed in Durbin and Watson [1971] and Pan, Jei-jian [1968].

The Durbin-Watson test is based on the statistic:

\[
d = \frac{\sum_{t=2}^{N} (e_t - e_{t-1})^2}{\sum_{t=1}^{N} e_t^2}
\]
where the e_t are OLS residuals. In matrix notation this can be stated as:

$$d = e'Ae / e'ee = e'MAm e / e'Me$$

where $M = I - X(X'X)^{-1}X'$ and A is a matrix with 2 on the main diagonal (except in the extreme corners where there is a 1), the upper and lower off diagonals have the value -1, and 0 is everywhere else.

The computations are shown in the SHAZAM output:

```
|_READ(11) YEAR CONSUME INCOME PRICE
...SAMPLE RANGE IS NOW SET TO: 1 17
| * Create X.
  |_GENR ONE=1
  |_COPY INCOME PRICE ONE X
| * Compute M.
  |_MATRIX M=IDEN(17)-X*INV(X'X)*X'
| * Generate the "A" matrix.
  |_GENR D=1
  |_SAMPLE 2 16
  |_GENR D=2
  |_SAMPLE 1 17
| * Put 1 on the off-diagonals.
  |_MATRIX A=IDEN(17,2)
| * Turn off diagonal to -1 and add the diagonal.
  |_MATRIX A=-(A+A')+DIAG(D)
| * Compute the eigenvalues of "MA" (Eigenvalues are sorted so largest is first)
  |_MATRIX MA=M*A
  |_MATRIX E=EIGVAL(MA)
| * Run OLS just to get the DW statistic from $DW$ when RSTAT is used.
  |_OLS CONSUME INCOME PRICE / RSTAT
OLS ESTIMATION
  17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO: 1, 17
R-SQUARE = .9513 R-SQUARE ADJUSTED = .9443
VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951
STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634
SUM OF SQUARED ERRORS-SSE = 433.31
MEAN OF DEPENDENT VARIABLE = 134.51
LOG OF THE LIKELIHOOD FUNCTION = -51.6471

<table>
<thead>
<tr>
<th>NAME</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO</th>
<th>PARTIAL STANDARDIZED ELASTICITY AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>1.0617</td>
<td>.2667</td>
<td>3.981</td>
<td>.001 .729 .2387 .8129</td>
</tr>
<tr>
<td>PRICE</td>
<td>-1.3830</td>
<td>.8381E-01</td>
<td>-16.50</td>
<td>0.00 -.975 -.9893 -.7846</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>130.71</td>
<td>27.09</td>
<td>4.824</td>
<td>.00 .790 .0000 .9718</td>
</tr>
</tbody>
</table>

DURBIN-WATSON = 2.0185 VON NEUMAN RATIO = 2.1447 RHO = -0.18239
RESIDUAL SUM = 0.96212E-12 RESIDUAL VARIANCE = 30.951
SUM OF ABSOLUTE ERRORS= 72.707
R-SQUARE BETWEEN OBSERVED AND PREDICTED = 0.9513
```
First, A and M are generated in matrix form and stored in the variables A and M. The generation of M is straightforward; the independent variables, $INCOME$ and $PRICE$, and a column of ones for the intercept, are copied into a matrix, X, with a \texttt{COPY} command and M is then generated with a \texttt{MATRIX} command. The generation of A, however, takes several steps. First, to create the diagonal of twos with ones in the extreme corners, a vector of twos is generated with a \texttt{GENR} command and this vector is then modified to have ones in the first and last rows (which will later become the extreme corners of the A matrix) with the use of two \texttt{IF} commands. The A matrix is then generated as an identity matrix with the ones starting on the second row. The A matrix is then transformed again to its final form with another \texttt{MATRIX} command. This is done by adding A and A' and multiplying the result by -1 (thus creating the upper and lower off-diagonals of -1) and adding D to be the diagonal of the A matrix. Next, the $N-K=14$ eigenvalues of the product of M and A are computed.

The Durbin-Watson statistic from the \texttt{OLS} regression is saved in a temporary variable called `${$DW}`. This value is then used with the \texttt{DISTRIB} command to compute the exact Durbin-Watson p-value. The \texttt{TYPE=IMHOF}, \texttt{EIGENVAL=} and \texttt{NEIGEN=} options must be used for correct results.

In this example, $d = 2.0185$. For a test of the null hypothesis of no autocorrelation in the residuals against positive autocorrelation the critical region is in the left hand tail of the distribution of d. The output of the \texttt{DISTRIB} command reports this probability in the \texttt{CDF} column. The p-value of 0.30127 suggests that the null hypothesis cannot be rejected.

\textit{Iterative Cochrane-Orcutt Estimation}

The easy way to implement iterative Cochrane-Orcutt estimation of the model with first-order autoregressive errors is to use the \texttt{AUTO} command. However, the example below shows how the method can also be programmed in SHAZAM. The final results are compared to the SHAZAM \texttt{AUTO} command:
| * Turn off useless output in DO-loop. |
| SET NODOECHO NOWARN |
| * Try up to 20 iterations. |
| DO #.=1,20 |
| * Transform all but first observation including CONSTANT. |
| SAMPLE 2 17 |
| GENR C=CONSUME-RHO*LAG(CONSUME) |
| GENR I=INCOME-RHO*LAG(INCOME) |
| GENR P=PRICE-RHO*LAG(PRICE) |
| GENR CONS=1-RHO |
| * Transform first observation. |
| SAMPLE 1 1 |
| GENR C=SQRT(1-RHO**2)*CONSUME |
| GENR I=SQRT(1-RHO**2)*INCOME |
| GENR P=SQRT(1-RHO**2)*PRICE |
| GENR CONS=SQRT(1-RHO**2) |
| * Run OLS on transformed data, suppress OLS output with ".?". |
| SAMPLE 1 17 |
| * Check for convergence, if so jump out of loop. |
| ENDF(ABS(RHO-LASTRHO).LT.0.01) |
| ?OLS C I P CONS / NOCONSTANT COEF=BETA |
| * Take OLS coefficients and get RH using original data. |
| ?FC CONSUME INCOME PRICE / COEF=BETA |
| * Save RHO to check for convergence next time. |
| GEN1 LASTRHO=RHO |
| PRINT $DO $SSE $RHO |
| * Put latest value of $RHO into RHO. |
| GEN1 RHO=$RHO |
| ENDO |

** Execution beginning for DO loop # = 1

$DO	1.000000
$SSE	433.3130
$RHO	-0.1823932
$DO	2.000000
$SSE	419.9997
$RHO	-0.1947947
$DO	3.000000
$SSE	419.8044
$RHO	-0.1953525

...ENDIF is true at observation 1

...DO loop ended at # = 4

* Print final results.

| OLS C I P CONS / NOCONSTANT |
| OLS ESTIMATION |
| 17 OBSERVATIONS DEPENDENT VARIABLE = C |

...Note...Sample range set to: 1, 17

R-SQUARE = .9709 R-SQUARE ADJUSTED = .9668

VARIANCE OF THE ESTIMATE-SIGMA**2 = 29.986
STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.4759
SUM OF SQUARED ERRORS-SSE = 419.80
MEAN OF DEPENDENT VARIABLE = 158.77
LOG OF THE LIKELIHOOD FUNCTION = -51.3777
RAW MOMENT R-SQUARE = .9991

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO 14 DF</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.0650</td>
<td>.2282</td>
<td>4.667</td>
<td>.000</td>
<td>.780</td>
</tr>
<tr>
<td>P</td>
<td>-1.3751</td>
<td>.7105E-01</td>
<td>-19.35</td>
<td>.000</td>
<td>-.982</td>
</tr>
<tr>
<td>CONST</td>
<td>129.62</td>
<td>23.05</td>
<td>5.624</td>
<td>.000</td>
<td>.833</td>
</tr>
</tbody>
</table>

PARTIAL STANDARDIZED ELASTICITY

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ESTIMATED COEFFICIENT</th>
<th>STANDARD ERROR</th>
<th>T-RATIO 14 DF</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.0650</td>
<td>.2282</td>
<td>4.667</td>
<td>.000</td>
<td>.780</td>
</tr>
<tr>
<td>P</td>
<td>-1.3751</td>
<td>.7105E-01</td>
<td>-19.35</td>
<td>.000</td>
<td>-.982</td>
</tr>
<tr>
<td>CONST</td>
<td>129.62</td>
<td>23.05</td>
<td>5.624</td>
<td>.000</td>
<td>.833</td>
</tr>
</tbody>
</table>

Notes: (variable names scrambled to prevent identification)
Note that the output from the programmed procedure matches that of the AUTO command except for certain statistics like R-SQUARE, LOG OF THE LIKELIHOOD FUNCTION, STANDARDIZED COEFFICIENT and ELASTICITY AT MEANS which are not properly computed with an OLS algorithm. The AUTO output has the correct values of these statistics.

Nonlinear Least Squares by the Rank One Correction Method

The next example illustrates how to write a SHAZAM program to do least squares by the rank one correction (ROC) method described in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, p. 959]. This method merely minimizes the sum of squared residuals and thus produces the same results as the OLS run. The following commands assume use of the data from Table B.2 on page 956 of the above reference.

```shazam
sample 1 20
read (tableb.2) y one x1 x2
gen1 nobs=20
copy x1 x2 one x
matrix yy=y'y
matrix xx=x'x
```
As can be seen in the above example, the ROC method involves computing the gradient at each iteration to see if it is close to zero and thus minimized. To do this, first S is computed, which is the objective function to be minimized. G, the gradient, is then computed from S.
Next, a DO-loop is initiated to perform the necessary computations until convergence, i.e. until \(G'G \) is close to zero. The starting value for \(B \) (beta) is one, but this value is transformed on each iteration, thus transforming the values for \(G \) and \(P \). \(P \) is the inverse of the Hessian and is transformed on each iteration by \(M \), a correction matrix. When convergence occurs, or when the DO-loop is performed 10 times, the current values of \(S \) and \(P \) are used to compute the variance of beta and ultimately to compute a t-ratio. In the commands above, a PRINT command is used to print out the final values of beta, the standard error and the t-ratio. These results can then be compared to the OLS results which will be generated by the final OLS command. The results should be the same.

Monte Carlo Experiments

This example is from an exercise in Judge, Hill, Griffiths, Lütkepohl and Lee [1988, Section 9.6.2, pp. 411-412]. A Monte Carlo experiment is designed to compare the parameter estimates obtained with OLS, GLS, and feasible GLS estimation of a model with AR(1) errors. A feature of the SHAZAM program to note is the use of the GENR command to generate the AR(1) errors by recursive calculations. The SET RANFIX command is used to ensure that the same set of random numbers will be used in repeated runs of the program so that the results can be replicated.

* Design Matrix

\begin{verbatim}
* Design Matrix
sample 1 20
read x1 x2 / list
14.53 16.74
15.30 16.81
15.92 19.50
17.41 22.12
18.37 22.34
18.83 17.47
18.84 20.24
19.71 20.37
20.01 12.71
20.26 22.98
20.77 19.33
21.17 17.04
21.34 16.74
22.91 19.81
22.96 31.92
23.69 26.31
24.82 25.93
25.54 21.96
25.63 24.05
28.73 25.66
\end{verbatim}
* Generate 1000 samples with true model: \(Y = 10 + X_1 + X_2 + e \)
* where \(e \) is an AR(1) process with: \(e = 0.8e(-1) + v \)
* and \(v \) is independent normally distributed with 0 mean and
 var.=6.4.

\[
\text{genl se=}\sqrt{6.4}
\]

* Allocate arrays to hold the estimates

\[
\text{dim bols 4 1000 stdols 4 1000 bgls 4 1000 stdgls 4 1000}
\]

\[
\text{dim begls 4 1000 stdeg 4 1000}
\]

* Request the same set of random numbers in repeated runs

\[
\text{set ranfix}
\]

* Suppress useless output

\[
\text{set nodoecho}
\]

\[
\text{do #=1,1000}
\]

\[
\text{sample 1 20}
\]

* Generate \(v \)

\[
\text{genr v=nor(se)}
\]

* Set an initial condition for \(e \)

\[
\text{genr e=0}
\]

* Generate \(e \) - recursive calculations

\[
\text{sample 2 20}
\]

\[
\text{genr e=0.8*lag(e)+v}
\]

\[
\text{sample 1 20}
\]

* Generate \(Y \) given \(X \) and \(e \).

\[
\text{genr y=10+x1+x2+e}
\]

* OLS estimation, suppress the output with ?

\[
\text{?ols y x1 x2 / coef=bols:# stderr=stdols:#}
\]

* GLS estimation (RHO is known)

\[
\text{?auto y x1 x2 / rho=0.8 coef=bgls:# stderr=stdgls:#}
\]

* Estimated GLS (RHO is estimated - iterated Cochrane-Orcutt)

\[
\text{?auto y x1 x2 / coef=begls:# stderr=stdeg:#}
\]

\[
\text{endo}
\]

* Transpose the arrays so that the STAT command can be used

\[
\text{matrix bols=bols'}
\]

\[
\text{matrix stdols=stdols'}
\]

\[
\text{matrix bgls=bgls'}
\]

\[
\text{matrix stdgls=stdgls'}
\]

\[
\text{matrix begls=begls'}
\]

\[
\text{matrix stdeg=stdeg'}
\]

\[
\text{sample 1 1000}
\]

\[
\text{stat bols bgls begls / mean=b stderr=ase}
\]

\[
\text{stat stdols stdgls stdeg / mean=ese stderr=stdse}
\]

\[
\text{sample 1 12}
\]
Annotated results obtained from the above program follow. B is the average parameter estimate, ASE is the standard deviation of the parameter estimate, ESE is the average standard error and $STDSE$ is the standard deviation of the standard errors.

<table>
<thead>
<tr>
<th>B</th>
<th>ASE</th>
<th>ESE</th>
<th>STDSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS ESTIMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.9957</td>
<td>.4091</td>
<td>.2092</td>
<td>.0540</td>
</tr>
<tr>
<td>.9986</td>
<td>.2093</td>
<td>.1768</td>
<td>.0456</td>
</tr>
<tr>
<td>10.1006</td>
<td>8.8212</td>
<td>3.8956</td>
<td>1.0047</td>
</tr>
<tr>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>GLS estimation (with $RHO=0.8$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.9889</td>
<td>.3080</td>
<td>.3802</td>
<td>.0649</td>
</tr>
<tr>
<td>1.0032</td>
<td>.1345</td>
<td>.1291</td>
<td>.0220</td>
</tr>
<tr>
<td>10.1398</td>
<td>5.7728</td>
<td>3.8956</td>
<td>1.2621</td>
</tr>
<tr>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>EGLS estimation (by iterative Cochrane-Orcutt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.9905</td>
<td>.3424</td>
<td>.2700</td>
<td>.0907</td>
</tr>
<tr>
<td>1.0051</td>
<td>.1433</td>
<td>.1348</td>
<td>.0242</td>
</tr>
<tr>
<td>10.0649</td>
<td>6.5016</td>
<td>5.6791</td>
<td>2.1816</td>
</tr>
<tr>
<td>.5031</td>
<td>.2589</td>
<td>.0000</td>
<td>.0000</td>
</tr>
</tbody>
</table>

The results show that the parameter estimates from the three estimation methods are unbiased with the exception of the parameter estimate for the autocorrelation parameter RHO that is obtained by iterative Cochrane-Orcutt estimation. The average parameter estimate for RHO is 0.5031 which is less than the true parameter value of 0.8. The standard deviations of the parameter estimates are smaller for EGLS (Estimated GLS or feasible GLS) estimation compared to OLS estimation to demonstrate that EGLS is efficient.

Bootstrapping Regression Coefficients

This example shows how to approximate the distribution of an estimator by using the Efron [1979] bootstrapping method that is discussed in Freedman and Peters [1984]. This is illustrated with an OLS regression using the Theil textile data set. A more automatic way of getting the results produced in the SHAZAM program below is with the commands:

```
set ranfix
ols consume income price
diagnos / bootsamp=1000
```

Note that the bootstrap method is a computationally slow and inaccurate way of getting OLS standard errors, but might be useful on other kinds of models. A valuable way to view the results is with a graphical presentation. The commands show two methods of obtaining a graphical display. First, a histogram is produced with the **GRAPH** command. Second, the
NONPAR command is used to construct a nonparametric kernel density estimate. The GRAPH option specifies that the plots are produced with the GNUPLLOT interface.

* Read the Theil textile data set
read(theil.dat) year consume income price

* Program to get OLS standard errors by Bootstrapping.
* Warning: This is a computationally expensive run.
* Run the original regression, save residuals and predicted values.
ols consume income price / resid=e predict=yhat

gen1 n=$n
gen1 k=$k
gen1 nrep=1000

* Create space to hold vectors of bootstrapped coefficients.
dim beta k nrep

* Turn off DO-loop printing or you will get lots of output.
set nodoecho
set nooutput
set ranfix
do #=1,nrep
 * Draw a random sample of errors with replacement.
genr newe=samp(e)*sqrt(n/(n-k))
 * Generate new dependent variable by using NEWE.
genr y=yhat+newe
ols y income price / coef=beta:#
endo

* Transpose the BETA matrix for use in STAT and PLOT commands.
* This is needed to get the numbers in column order.
matrix beta=beta'
set output

* Set the sample size to number of replications.
sample 1 nrep

* Get the statistics on the replications.
stat beta

* Look at the frequency distribution for the INCOME coefficient.
genr bl=beta:1

* Plot a histogram
graph b1 / histo groups=30

* Now get a nonparametric density estimate
nonpar b1 / density graph

The histogram presentation of the distribution for the coefficient on INCOME is:

The above histogram can be compared with the nonparametric density estimate that is generated with the NONPAR command. The graph of this estimate is:
Heteroskedastic Consistent Covariance Matrices

The easy way to get White's [1980] heteroskedastic consistent covariance matrix is to use the **HETCOV** option on **OLS**. However, this example shows how to program it and some variations discussed in MacKinnon and White [1985]. The example also shows how to use the estimator proposed by Cragg [1983].

```shazam
|_READ(11) YEAR CONSUME INCOME PRICE

...SAMPLE RANGE IS NOW SET TO:         1        17
|* First run OLS, save residuals
|_OLS CONSUME INCOME PRICE / RESID=U STDERR=OSE

OLS ESTIMATION
  17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
...NOTE..SAMPLE RANGE SET TO:          1,       17

R-SQUARE =    .9513     R-SQUARE ADJUSTED =    .9443
VARIANCE OF THE ESTIMATE-SIGMA**2 =    30.951
STANDARD ERROR OF THE ESTIMATE-SIGMA =    5.5634
SUM OF Squared ERRORS-SSE=   433.31
MEAN OF DEPENDENT VARIABLE =   134.51
LOG OF THE LIKELIHOOD FUNCTION =    -51.6471

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
  NAME COEFFICIENT ERROR  14 DF  P-VALUE CORR. COEFFICIENT AT MEANS
INCOME  1.0617      .2667       3.981      .001  .729      .2387      .8129
PRICE  -1.3830      .8381E-01  -16.50      .000 -.975   -.9893    -.7846
CONSTANT 130.71      27.09       4.824      .000 .790     .0000      .9718

|* Next square the residuals and copy the independent variables
|* into the X matrix.
|_GENR U2=U**2
```
PROGRAMMING IN SHAZAM

```shazam
| GENR ONE=1
| COPY INCOME PRICE ONE X
| * Now HC is White's(1980) covariance matrix for heteroskedasticity.
| MATRIX HC=INV(X'X)*X'DIAG(U2)*X*INV(X'X)
| * Now get the corrected standard errors and print them out.
| MATRIX HSE=SQRT(DIAG(HC))
| PRINT OSE
| OSE
| 0.2666740 0.8381426E-01 27.09429
| PRINT HSE
| HSE
| 0.2172196 0.7422455E-01 23.66507
| * Note that the corrected standard errors are smaller.
| * Now get HC1, the Hinkley method of estimation.
| MATRIX HC1=($N/$DF)*HC
|..NOTE..CURRENT VALUE OF $N   =   17.000
|..NOTE..CURRENT VALUE OF $DF =   14.000
| MATRIX KTT=DIAG(X*INV(X'X)*X')
| * HC2 is the Horn and Duncan estimate.
| MATRIX SIG2=U2/(1-KTT)
| * HC3 is the MacKinnon and White(1985) Jackknife estimate.
| MATRIX HC3=((SN-1)/SN)*INV(X'X)*(X'OM*X-(1/SN)*(X'USTAR*USTAR'X))*INV(X'X)
| * Now print out the 4 different covariance matrix estimates.
| PRINT HC HC1 HC2 HC3
| HC
| 3 BY 3 MATRIX
| 0.4718433E-01 0.2076371E-03 -4.957136
| 0.2076371E-03 0.5509284E-02 -0.4802344
| -4.957136 -0.4802344 560.0357
| HC1
| 3 BY 3 MATRIX
| 0.5729526E-01 0.2521307E-03 -6.019380
| 0.2521307E-03 0.6689845E-02 -0.5831418
| -6.019380 -0.5831418 680.0433
| HC2
| 3 BY 3 MATRIX
| 0.6044015E-01 -0.5570915E-03 -6.295172
| -0.5570915E-03 0.6942529E-02 -0.5138845
| -6.295172 -0.5138845 704.1588
| HC3
| 3 BY 3 MATRIX
| 0.7333148E-01 -0.1782186E-02 -7.563165
| -0.1782186E-02 0.8325627E-02 -0.4927166
| -7.563165 -0.4927166 836.8303
| * Now do the Cragg (1983) estimator using X**2 as auxiliary variables.
| GENR INCOME2=INCOME**2
| GENR PRICE2=PRICE**2
| COPY INCOME PRICE ONE INCOME2 PRICE2 Q
| * The coefficient vector BA is Cragg's equation (13), p. 753.
| MATRIX BA=INV(X'Q'*INV(Q'DIAG(U2)*Q)*Q'X)*X'Q'*INV(Q'DIAG(U2)*Q)*Q'CONSUME
| * The covariance matrix VBA is Cragg's equation (14), p. 754.
| MATRIX VBA=INV(X'Q'*INV(Q'DIAG(U2)*Q)*Q'X)
| * Note that BA and VBA have many similar terms. It would have
| * been cheaper to compute them separately first.
| PRINT BA VBA
| BA
| 0.9725258 -1.367748 138.8088
| VBA
```
Hausman Specification Test

This example shows how to use Hausman's [1978] specification test in an errors in variables model. The model is a regression of consumption on income where it is suspected that income is measured with error. The investment variable is used as an instrumental variable.

```
| * Hausman specification test of error in variables
| * EXAMPLE: The data set on investment (I), consumption (C) and
| * income (Y) is from Griffiths, Hill and Judge (1993, Table 14.2, p. 464).
| * SAMPLE 1 20
| * READ I C Y
3 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1

| * Estimation using the consistent estimator (IV) under both
| * the null and the alternative hypotheses;
| * in SHAZAM, the 2SLS command is used for instrumental variable estimation
| 2SLS C Y (I) / DN COEF=B1 PCOV COV=V1
TWO STAGE LEAST SQUARES - DEPENDENT VARIABLE = C
1 EXOGENOUS VARIABLES
2 POSSIBLE ENDOGENOUS VARIABLES
20 OBSERVATIONS
DN OPTION IN EFFECT - DIVISOR IS N

R-SQUARE = .9893 R-SQUARE ADJUSTED = .9887
VARIANCE OF THE ESTIMATE-SIGMA**2 = .67175E-01
STANDARD ERROR OF THE ESTIMATE-SIGMA = .25918
SUM OF SquARED ERRORS-SSE= 1.3435
MEAN OF DEPENDENT VARIABLE = 21.747

 ASYMPOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR ----------- P-VALUE CORR. COEFFICIENT AT MEANS
Y .79036 .2074E-01 38.12 .000 .994 .9560 .8955
CONSTANT 2.2734 .5142 4.421 .000 .722 .0000 .1045

VARIANCE-COVARIANCE MATRIX OF COEFFICIENTS
| Y .42995E-03
| CONSTANT -.10594E-01 .26437
| CONSTANT

| .GEN1 SIGIV=$SIG2
| .NOTE..CURRENT VALUE OF $SIG2= .67175E-01

| * Estimation using the efficient estimator (OLS) under the null
| *OLS C Y / DN COEF=B0 COV=V0 NOMULSIGSQ
OLS ESTIMATION
20 OBSERVATIONS DEPENDENT VARIABLE = C
...NOTE..SAMPLE RANGE SET TO: 1, 20

R-SQUARE = .9908 R-SQUARE ADJUSTED = .9903
VARIANCE OF THE ESTIMATE-SIGMA**2 = .57482E-01
STANDARD ERROR OF THE ESTIMATE-SIGMA = .23975
```

3 BY 3 MATRIX
0.3068722E-01 0.1126381E-02 -3.324788
0.1126381E-02 0.5418412E-02 -0.5683495
-3.324788 -0.5683495 398.3224
A general version of the Hausman specification test is described in Griffiths, Hill and Judge [1993, Appendix 14A.4, pp. 475-6].

Non-Nested Model Testing

This example shows how to apply the nonnested Cox test and the Davidson-MacKinnon [1981] J-test described in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, pp. 883-884]. Theil’s textile data is used to test the two linear regressions CONSUME on INCOME and CONSUME on PRICE. The test procedure first tests H1 (INCOME is the correct variable) and then H2 (PRICE is the correct variable). It should be noted that we have strong theoretical reasons to believe that both INCOME and PRICE belong in the regression in this example.

In the output below the Cox test statistics indicate that the INCOME model is rejected, but the PRICE model is not rejected. However, the J-test statistics reject both models.
PROGRAMMING IN SHAZAM

| OLS CONSUME INCOME / COEF=B1 DN PREDICT=Y1HAT
| OLS ESTIMATION
| 17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
| ...NOTE..SAMPLE RANGE SET TO: 1, 17
| R-SQUARE = .0038 R-SQUARE ADJUSTED = - .0626
| VARIANCE OF THE ESTIMATE-SIGMA**2 = 521.19
| STANDARD ERROR OF THE ESTIMATE-SIGMA = 22.830
| SUM OF SquARED ERRORS-SSE = 8860.3
| MEAN OF DEPENDENT VARIABLE = 134.51
| LOG OF THE LIKELIHOOD FUNCTION = -77.2990

| ASYMPTOTIC
| VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
| NAME COEFFICIENT ERROR ***** DF P-VALUE CORR. COEFFICIENT AT MEANS
| INCOME .27473 1.077 .2552 .799 .066 .0618 .2103
| CONSTANT 106.21 111.0 .9567 .339 .240 .0000 .7897

| OLS CONSUME PRICE / COEF=B2 DN PREDICT=Y2HAT
| OLS ESTIMATION
| 17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
| ...NOTE..SAMPLE RANGE SET TO: 1, 17
| R-SQUARE = .8961 R-SQUARE ADJUSTED = .8892
| VARIANCE OF THE ESTIMATE-SIGMA**2 = 54.348
| STANDARD ERROR OF THE ESTIMATE-SIGMA = 7.3721
| SUM OF SquARED ERRORS-SSE = 923.91
| MEAN OF DEPENDENT VARIABLE = 134.51
| LOG OF THE LIKELIHOOD FUNCTION = -58.0829

| ASYMPTOTIC
| VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
| NAME COEFFICIENT ERROR ***** DF P-VALUE CORR. COEFFICIENT AT MEANS
| PRICE -1.3233 .1093 -12.11 .000 -.952 -.9466 -.7508
| CONSTANT 235.49 8.528 27.61 .000 .990 .0000 1.7508

| _GEN1 S1=$SIG2
| ..NOTE..CURRENT VALUE OF $SIG2= 521.19
| _OLS CONSUME PRICE / COEF=B2 DN PREDICT=Y2HAT
| OLS ESTIMATION
| 17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
| ...NOTE..SAMPLE RANGE SET TO: 1, 17
| R-SQUARE = .8961 R-SQUARE ADJUSTED = .8892
| VARIANCE OF THE ESTIMATE-SIGMA**2 = 54.348
| STANDARD ERROR OF THE ESTIMATE-SIGMA = 7.3721
| SUM OF SquARED ERRORS-SSE = 923.91
| MEAN OF DEPENDENT VARIABLE = 134.51
| LOG OF THE LIKELIHOOD FUNCTION = -58.0829

| ASYMPTOTIC
| VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
| NAME COEFFICIENT ERROR ***** DF P-VALUE CORR. COEFFICIENT AT MEANS
| PRICE -1.3233 .1093 -12.11 .000 -.952 -.9466 -.7508
| CONSTANT 235.49 8.528 27.61 .000 .990 .0000 1.7508

| _GEN1 S2=$SIG2
| ..NOTE..CURRENT VALUE OF $SIG2= 54.348
| _* Create the X and Z matrices, X for H1, Z for H2.
| _GENR ONE=1
| _COPY INCOME ONE X
| _COPY PRICE ONE Z
| _* Create the M matrices, M1 for H1, M2 for H2.
| _MATRIX M2=IDEN(17)-Z*INV(Z'Z)*Z'
| _MATRIX M1=IDEN(17)-X*INV(X'X)*X'
| _* Test H1: The hypothesis that income is the true model.
| _* The test statistic H1 is asymptotically normally distributed.
| _MATRIX S21=S1+1/$N*(B1'X'M2*X*B1)
| ..NOTE..CURRENT VALUE OF $N = 17.000
| _MATRIX C12=$N/2*LOG(S2/S21)
| ..NOTE..CURRENT VALUE OF $N = 17.000
| _MATRIX VC12=(S1/S21**2)*(B1'X'M2*M1*M2*X*B1)
| _MATRIX H1=C12/SQRT(VC12)
| _PRINT C12 VC12 H1
| C12
| -19.24761
| VC12
| 0.2001174E-02
| H1
| -430.2633
| _* Now test H2: The hypothesis that price is the true model.
The test statistic H_2 is asymptotically normally distributed.

\[S_{12} = S_2 + 1/N (B_2'Z'M_1Z'B_2) \]

..NOTE..CURRENT VALUE OF $N \ = \ 17.000$

\[C_{21} = N/Z \log(S_1/S_{12}) \]

..NOTE..CURRENT VALUE OF $N \ = \ 17.000$

\[V_C_{21} = (S_2/S_{12}^2) (B_2'Z'M_1M_2M_1Z'B_2) \]

\[H_2 = C_{21} / \sqrt{V_C_{21}} \]

|PRINT C_{21} VC_{21} H_2 |
|---|---|---|
|C_{21} 0.2147064 VC_{21} 0.5193263E-01 H_2 0.9421603 |

Now try the Davidson-MacKinnon J Test.

To test H_1, see if coef on Y_2HAT is zero.

OLS CONSUME INCOME Y_2HAT

OLS ESTIMATION

17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME

...NOTE..SAMPLE RANGE SET TO: 1, 17

R-SQUARE = .9513 R-SQUARE ADJUSTED = .9443

VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951

STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634

SUM OF SQUARED ERRORS-SSE = 433.31

MEAN OF DEPENDENT VARIABLE = 134.51

LOG OF THE LIKELIHOOD FUNCTION = -51.6471

<table>
<thead>
<tr>
<th>NAME</th>
<th>COEFFICIENT</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT</th>
<th>AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td>1.0617</td>
<td>.2667</td>
<td>3.981</td>
<td>.001</td>
<td>.729</td>
<td>.2387</td>
</tr>
<tr>
<td>Y2HAT</td>
<td>1.0451</td>
<td>.6334E-01</td>
<td>16.50</td>
<td>.000</td>
<td>.975</td>
<td>.9893</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-115.40</td>
<td>30.20</td>
<td>-3.821</td>
<td>.002</td>
<td>-.714</td>
<td>.0000</td>
</tr>
</tbody>
</table>

Now test H_2, see if coef on Y_1HAT is zero.

OLS CONSUME PRICE Y_1HAT

OLS ESTIMATION

17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME

...NOTE..SAMPLE RANGE SET TO: 1, 17

R-SQUARE = .9513 R-SQUARE ADJUSTED = .9443

VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951

STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634

SUM OF SQUARED ERRORS-SSE = 433.31

MEAN OF DEPENDENT VARIABLE = 134.51

LOG OF THE LIKELIHOOD FUNCTION = -51.6471

<table>
<thead>
<tr>
<th>NAME</th>
<th>COEFFICIENT</th>
<th>STANDARD</th>
<th>T-RATIO</th>
<th>P-VALUE</th>
<th>CORR. COEFFICIENT</th>
<th>AT MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRICE</td>
<td>-1.3830</td>
<td>.8381E-01</td>
<td>-16.50</td>
<td>.000</td>
<td>-.975</td>
<td>-.9893</td>
</tr>
<tr>
<td>Y1HAT</td>
<td>3.8645</td>
<td>.9707</td>
<td>3.981</td>
<td>.001</td>
<td>.729</td>
<td>.2387</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-279.75</td>
<td>129.6</td>
<td>-2.159</td>
<td>.049</td>
<td>-.500</td>
<td>.0000</td>
</tr>
</tbody>
</table>

Solving Nonlinear Sets of Equations

Consider the task of finding a solution X to the equation $f(X) = 0$ (where X may be a vector).

For example, in the single variable case,
\[X^2 - 4X = -4 \]

This can be expressed in implicit function form as:

\[X^2 - 4X + 4 = 0 \]

A solution can be obtained by a numerical iterative method with the use of the `SOLVE` option on the `NL` command. The `SAMPLE` command must be set to one observation. The implicit function form of the equation (excluding the = sign) is specified on the `EQ` command. This is shown in the SHAZAM output below.

```
|_SAMPLE 1 1
|_NL 1 / NCOEF=1 SOLVE PITER=50
   ...NOTE..SAMPLE RANGE SET TO:  1,   1
|_EQ (X*X)-4*X+4
|_COEF X 5
  0 VARIABLES IN  1 EQUATIONS WITH  1 COEFFICIENTS
  1 OBSERVATIONS
COEFFICIENT STARTING VALUES
X            5.0000

100 MAXIMUM ITERATIONS, CONVERGENCE = .000010

INITIAL STATISTICS :
TIME =     .250 SEC.   ITER. NO.     0   FUNCT. EVALUATIONS     1
FUNCTION VALUE=   81.00000     FUNCTION VALUE/N =   81.00000
COEFFICIENTS
X            5.000000
GRADIENT     108.0000

FINAL STATISTICS :
TIME =     .340 SEC.   ITER. NO.    34   FUNCT. EVALUATIONS    35
FUNCTION VALUE=   .8261134E-15 FUNCTION VALUE/N =   .8261134E-15
COEFFICIENTS
X            2.000128
GRADIENT  .1949125E-10
   COEFFICIENT
X            2.0001
|  END
```

The solution of the equation is near \(X = 2 \). The `FUNCTION VALUE` (in this case the value reported is \(f^2(X) \)) and the `GRADIENT` should be very close to zero if a solution has been found.

This technique can be generalized to solve a set of equations simultaneously. For example, consider two equations with variables \(X1 \) and \(X2 \). The implicit function form in SHAZAM notation is:
\[X_1^{**2} + 3X_1X_2 - 22 \]
\[X_2^{**2} + 2X_1X_2 - 21 \]

The solution is shown in the output:

```
SAMPLE 1 1
  |NL 2 / NCOEF=2 SOLVE
  |..NOTE..SAMPLE RANGE SET TO: 1, 1
  |_EQ X1**2 + 3*X1*X2 - 22
  |_EQ X2**2 + 2*X1*X2 - 21
  |_COEF X1 1 X2 1
  0 VARIABLES IN 2 EQUATIONS WITH 2 COEFFICIENTS
  1 OBSERVATIONS

COEFFICIENT STARTING VALUES
X1 1.0000      X2 1.0000

100 MAXIMUM ITERATIONS, CONVERGENCE = 0.100000E-04

INITIAL STATISTICS:
TIME = 0.190 SEC. ITER. NO. 0 FUNCT. EVALUATIONS 1
FUNCTION VALUE= 648.0000 FUNCTION VALUE/N = 648.0000
COEFFICIENTS
  1.000000    1.000000
GRADIENT
-252.00000  -252.00000

FINAL STATISTICS:
TIME = 0.190 SEC. ITER. NO. 8 FUNCT. EVALUATIONS 14
FUNCTION VALUE= 0.7009970E-14 FUNCTION VALUE/N = 0.7009970E-14
COEFFICIENTS
  2.000000    3.000000
GRADIENT
0.1618480E-05  0.1900579E-05

COEFFICIENT
X1 2.0000
X2 3.0000
| END
```

The solution to the equations is near \(X_1=2\) and \(X_2=3\). Remember that there may be multiple answers, so you may need to experiment with different starting values.
Multinomial Logit Models

An introduction to multinomial choice models is available in Judge, Griffiths, Hill, Lütkepohl and Lee [1985, Chapter 18.3]. Suppose that J+1 alternatives are available. For the multinomial logit model consider that the probability that individual (or firm) t will select alternative j for \(j = 0, \ldots, J \) is:

\[
P_{t0} = \frac{1}{[1 + \sum_{j=1}^{J} \exp(X_t'\beta_j)]} \quad \text{and} \quad P_{tj} = \frac{\exp(X_t'\beta_j)}{[1 + \sum_{j=1}^{J} \exp(X_t'\beta_j)]} \quad \text{for} \quad j = 1, \ldots, J
\]

where \(X_t \) is a vector of variables and the \(\beta_j \) are vectors of unknown parameters. For individual t let \(Y_{tj} \) be a binary variable that is 1 if alternative j is chosen and 0 otherwise. The log-density for observation t can be stated as:

\[
L_t = \sum_{j=1}^{J} Y_{tj}(X_t'\beta_j) - \log[1 + \sum_{j=1}^{J} \exp(X_t'\beta_j)]
\]

With the assumption of independence the log-likelihood function is obtained by summing the individual log-densities. Maximum likelihood estimation of this model can be implemented with the **LOGDEN** option on the **NL** command. The **EQ** statement is used to give the formula for the log-density of a single observation.

To interpret the results it is useful to evaluate how the choice probabilities change in response to changes in the independent variables. For predicted choice probabilities \(\hat{P}_{tj} \) the elasticities are calculated as:

\[
\left(\frac{X_{tk}}{\hat{P}_{tj}}\right)\left(\frac{\partial \hat{P}_{tj}}{\partial X_{tk}}\right)
\]

The **DERIV** command can be used to compute the required derivatives and then the estimated elasticities can be obtained. Elasticities can be computed as weighted aggregated elasticities as described in the chapter **PROBIT AND LOGIT REGRESSION** and given in Hensher and Johnson [1981, Equation 3.44].

The SHAZAM program that follows shows the steps involved in the estimation and analysis of a multinomial logit model. It is assumed that three alternatives are available and a data file **FIRMS.DAT** contains binary variables \(Y1 \) and \(Y2 \) that indicate choices for alternatives 1 and 2. The variable calculated as \(1-Y1-Y2 \) is then 1 if the third alternative is chosen and 0 otherwise. The data file also contains independent variables \(X1, X2 \) and \(X3 \).
The first task is to determine sensible starting values for the multinomial logit estimation. The approach illustrated here is to estimate a "null model" with constant terms only. The estimates are used to initialize starting values in the variable BETA. The value of the log-likelihood function for the null model is computed in the variable LL0. The multinomial logit model is then specified and estimated with the NL command. Note that the value of the log-likelihood function at the first iteration should be identical to the value of LL0.

A number of goodness-of-fit measures can be considered (see, for example, Maddala [1983, Chapter 3]). A measure that is easily computed is a likelihood ratio test statistic. The value of the log-likelihood function at the final iteration of the NL procedure is available in the temporary variable $LLF. The commands below show the calculation of the likelihood ratio test statistic in the variable LR. Predicted choice probabilities are then computed. For each observation, the alternative with the highest probability can be determined and a prediction success table can be formed. This is left to the user as an exercise. Finally, derivatives and elasticities are calculated.

The commands demonstrated here can be modified to estimate nested logit models as described in Amemiya [1985, Chapter 9]. That is, the main requirement for maximum likelihood estimation of these models in SHAZAM is to write an expression for the log-density of a single observation.

* Read and Generate data

```
read (firms.dat) y1 y2 x1 x2 x3
genr y0=1-y1-y2
?stat y1 y2 y0 / sums=stot
gen1 ntot=stot:1+stot:2+stot:3
gen1 a1=log(stot:1/stot:3)
gen1 a2=log(stot:2/stot:3)
```

* Value of log-likelihood function for "null" model

```
gen1 ll0=stot:1*a1+stot:2*a2-ntot*log(1+exp(a1)+exp(a2))
print stot ntot a1 a2 ll0
```

* Set starting values

```
dim beta 8
genl beta:1=a1
genl beta:5=a2
```

* Specify the parameterization of the model.

```
eq1: (b10+b11*x1+b12*x2+b13*x3)
eq2: (b20+b21*x1+b22*x2+b23*x3)
```
* Multinomial logit estimation by maximum likelihood
nl 1 / logden ncoef=8 start=beta piter=100 genrvar
eq y1* [eq1] + y2* [eq2] \ -log(1+exp([eq1])+exp([eq2]))
end

* A goodness-of-fit measure is the likelihood ratio test.
* The test can be compared with a Chi-square distribution with
* 6 d.f.
genl lr=2*($llf-ll0)
print lr

* Calculate the predicted choice probabilities
genr p1=exp([eq1]) / (1+exp([eq1])+exp([eq2]))
genr p2=exp([eq2]) / (1+exp([eq1])+exp([eq2]))

* Calculate derivatives and elasticities
set nodoecho
do # =1,3
 deriv x# vp1=exp([eq1]) / (1+exp([eq1])+exp([eq2]))
 deriv x# vp2=exp([eq2]) / (1+exp([eq1])+exp([eq2]))
do % =1,2
genr ve=vp%*x#
?stat ve p% / sums=tot
genl ve% %=tot:1/tot:2
endo
endo

* Weighted Aggregate Elasticities
print ve11 ve21 ve31 ve12 ve22 ve32
42. SHAZAM PROCEDURES

“It will take six months or more for the colonial secretary to deal with the matter and months more before we learn of his decision. But you will not be interested in what he decides for you are to be hanged on Monday morning.”

Matthew B. Begbie
Canadian Judge, 19th Century

SHAZAM provides many features to aid users who wish to write their own programs. SHAZAM PROCS require the knowledge of three commands: \texttt{PROC}, \texttt{PROCEND}, and \texttt{EXEC} as well as the concept of SHAZAM character strings.

| SHAZAM CHARACTER STRINGS |

A character string is actually a SHAZAM variable which contains a set of characters rather than numeric data. Character strings can be used at any time and are not restricted for use in SHAZAM procedures. They can simplify the use of repeated character sequences in a SHAZAM program. For example, if you always use the list of variable names: \texttt{CONSUME INCOME PRICE} in many parts of your SHAZAM program, you can define a character variable which contains these characters. Note that the character string contains only the characters and not the actual data. To define a character string, simply chose a variable name that is not used in your SHAZAM program and place a colon ":" after the name and follow it with the desired character string, as in:

mylist:consume income price

In this case the SHAZAM variable \texttt{MYLIST} is created and it contains only the characters \texttt{CONSUME INCOME PRICE}. If any spaces are included immediately following the ":" they will be included in the character string.

Next, you could use the contents of the variable \texttt{MYLIST} in any SHAZAM command by enclosing the character variable in left and right brackets as in:

\texttt{ols [mylist] / rstat}

SHAZAM would then interpret the above command as:

\texttt{ols consume income price / rstat}
If you wish to see the actual characters in the variable \textit{MYLIST}, just print it with:

\texttt{print mylist}

The output from the above SHAZAM commands would look like:

\begin{verbatim}
|_MYLIST:CONSUME INCOME PRICE
|_OLS CONSUME INCOME PRICE / RSTAT
 OLS ESTIMATION
 17 OBSERVATIONS DEPENDENT VARIABLE = CONSUME
 ...NOTE..SAMPLE RANGE SET TO: 1, 17
 R-SQUARE = .9513 R-SQUARE ADJUSTED = .9443
 VARIANCE OF THE ESTIMATE-SIGMA**2 = 30.951
 STANDARD ERROR OF THE ESTIMATE-SIGMA = 5.5634
 SUM OF SQUARED ERRORS-SSE= 433.31
 MEAN OF DEPENDENT VARIABLE = 134.51
 LOG OF THE LIKELIHOOD FUNCTION = -51.6471

 VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
 NAME COEFFICIENT ERROR 14 DF P-VALUE CORR. COEFFICIENT AT MEANS
 INCOME 1.0617 .2667 3.981 .001 .729 .2387 .8129
 PRICE -1.3830 0.8381E-01 -16.50 .000 -.975 -.9893 -.7846
 CONSTANT 130.71 27.09 4.824 .000 .790 .0000 .9718

 DURBIN-WATSON = 2.0185 VON NEUMANN RATIO = 2.1447 RHO = -.18239
 RESIDUAL SUM = 0.53291E-14 RESIDUAL VARIANCE = 30.951
 SUM OF ABSOLUTE ERRORS= 72.787
 R-SQUARE BETWEEN OBSERVED AND PREDICTED = .9513
 RUNS TEST: 7 RUNS, 9 POSITIVE, 8 NEGATIVE, NORMAL STATISTIC = -1.2423
|_PRINT MYLIST
 CONSUME INCOME PRICE
\end{verbatim}

Character strings are used heavily in SHAZAM procedures to define lists of variables at execution time rather than in the procedure itself. Examples will be detailed below.

While character strings are frequently used to contain a list of variable names, they could also be used to contain any set of characters including an entire equation. For example suppose you wanted to square a set of variables, you could first define the character variable:

\begin{verbatim}
mymath:**2
\end{verbatim}

\begin{verbatim}
genr y=x[mymath]
genr z=w[mymath]
\end{verbatim}

This would be equivalent to:

\begin{verbatim}
genr y=x**2
genr z=w**2
\end{verbatim}
If you later decide to divide by 3 instead of squaring the variable it would only be necessary to change one line of the program and use:

\[\text{mymath:}/3 \]

and this would be equivalent to:

\[
\begin{align*}
\text{genr} & \quad y = x/3 \\
\text{genr} & \quad x = w/3
\end{align*}
\]

WRITING A SHAZAM PROCEDURE

A SHAZAM procedure is a set of SHAZAM commands contained within `PROC` and `PROCEND` commands. If the procedure is maintained in a separate file the `FILE PROC` or `FILE PROCPATH` command must be specified. The commands are executed with the SHAZAM `EXEC` command. Every procedure must have a name which has not been used as a previous variable. The procedure name is specified on the `PROC` command and also on the `EXEC` command.

The `READ` command followed by data is not allowed in a SHAZAM procedure.

A simple SHAZAM procedure is:

```shazam
proc olsyx
    sample 1 20
    genr y=nor(1)
    genr x=nor(1)
    ols y x
procend
```

The above commands will simply define two random variables using the normal random number generator and then run an OLS regression. The procedure is executed with the `EXEC` command. Suppose you want to run the procedure three times and hence obtain three different OLS regressions since different random numbers would be generated each time. The command file would look like:

```shazam
proc olsyx
    sample 1 20
    genr y=nor(1)
    genr x=nor(1)
    ols y x
procend
exec olsyx
```
exec olsyx
exec olsyx
exec olsyx

You might decide that you like your OLSYX procedure so much that you want to keep it in your library of procedures. In that case you would simply create a file with a filename identical to the PROC name. Use a file with the name OLSYX and put the commands from PROC to PROCEND in the file. After the file has been saved, your SHAZAM command file only requires the commands:

exec olsyx
exec olsyx
exec olsyx

SHAZAM will search your current default directory for a file with the name OLSYX and load the procedure and then execute it three times.

It is also possible to use SHAZAM DO-loops to avoid repetitive commands as in:

do #=1,3
test olsyx
endo

Most users like to keep their SHAZAM procedures in a separate folder. For example, if all procedures are in the folder C:\SHAZAM\SHAZPROCS\ then you would include the FILE PROCPATH command in your SHAZAM command file so that the proper folder is searched as in:

file procpath c:\shazam\shazprocs\
exec olsyx
exec olsyx
exec olsyx
exec olsyx

Alternatively, you can use the FILE PROC command to load the PROC from any folder as in:

file proc c:\procs\olsyx
exec olsyx
exec olsyx
exec olsyx
exec olsyx

Other systems should have a FILE PROCPATH corresponding to filename conventions for that system.
While the OLSYX procedure will certainly prove valuable in your research you might find that it is too restrictive because sometimes you would like to add additional variables to the regression. This is where character variables are used. However, first the OLSYX proc will be modified to reduce potential confusion in a SHAZAM program. It will be convenient to use an underscore "_" in variable names inside a procedure so they would not get confused with variable names outside the procedure. For example you might already have a variable with the name \(Y \) and it could be unexpectedly redefined if the OLSYX procedure were used in its current form. Hence, the procedure will use the variables \(Y__ \) and \(X__ \) instead of \(Y \) and \(X \). The ALL_ option on the DELETE command can be used to delete all variables with an underscore at the end. The second modification to the procedure will allow you to include additional variables and change them each time the procedure is executed. This feature will require a character string which will be given the name MOREVARS in the revised procedure below. In addition, a character string with the name OPTS will be used to pass options for the OLS command down to the revised OLSYX procedure.

```shazam
proc olsyx
    sample 1 20
    genr y_\_=nor(1)
    genr x_\_=nor(1)
    ols y \_ x \_ [morevars] / [opts]
procend
```

Now consider the SHAZAM commands:

```shazam
sample 1 20
genr z=uni(1)
genr w=uni(1)
morevars:z w
opts:anova
exec olsyx
morevars:z
opts:
exec olsyx
morevars:
opts:max
exec olsyx
```

It should be easy to figure out that the above program would be equivalent to the following three OLS commands:

```shazam
ols y x z w / anova
ols y x z
```
In summary, the general format for using SHAZAM procedures is:

```
FILE PROCPATH pathname or FILE PROC filename
charname: string
EXEC proc_name
```

The general format for the PROC is:

```
PROC proc_name
   . . .
   (SHAZAM commands)
   . . .
PROCEND
```

CONTROLLING PROCEDURE OUTPUT

SHAZAM procedures can often become quite long and you will not want to see the commands printed when the procedure is loaded or when it is executed. It is easy to stop the procedure from printing when loaded by placing the commands `SET NOECHO` before the procedure and then include `SET ECHO` after the procedure to allow commands to appear again. In addition it is sometimes useful to begin certain commands with an "=" which suppresses the printing of that particular command. Commands that begin with "?" will suppress the output of the command. Furthermore, the `SET NODOECHO` command will suppress the echoing of commands within a DO-loop and the `SET NOOUTPUT` command will turn off most (but not all output). These features are used in the example below. You will want to experiment with these features to obtain desired results. Comments that begin with a single * will not be printed in the output but comments that begin with a double ** will be printed.

EXAMPLES

Square Root of a Matrix

For a given matrix A it is sometimes necessary to find the square root of A. The `SQRT()` function on the `MATRIX` command simply takes the square root of each element of the matrix but it may be necessary to find the matrix X such that XX=A. The `SQRT()` function does not do this. Various algorithms have been proposed from time to time and they
usually involve matrix decompositions. For example, if A is a real, symmetric matrix then an eigenvalue-eigenvector decomposition can be used such that new matrices are defined where $V'V=I$, $AV=VD$, D is a diagonal matrix, $A=VQV'$, $QQ=D$, and $XX=A$, where $X=VQV'$. A procedure named `SQRTA` to compute X is:

```shazam
proc sqrta
* [AMATRIX]=INPUT MATRIX
* [XMATRIX]=OUTPUT MATRIX
* GET SQRT OF A MATRIX
  matrix a_=[amatrix]
  matrix v_=eigvec(a_)
  matrix d_=eigval(a_)
  matrix q_=sqrt(d_)
  matrix x_=v_*diag(q_)*v_'
  matrix [xmatrix]=x_
delete / all_
procend
```

However, another method is an iterative procedure described in Golub and Van Loan [1983, p.395]. This method says to simply iterate on the formula:

$$X_{k+1} = \frac{1}{2}(X_k + AX_k^{-1})$$

where the initial matrix X_0 is an identity matrix. A SHAZAM procedure to do this for up to 20 iterations and check for convergence is:

```shazam
set noecho
proc sqrtm
set nodoecho nooutput
* [AMATRIX]=INPUT MATRIX
* [XMATRIX]=OUTPUT MATRIX

* Procedure for obtaining the square root of a matrix
  matrix a_=[amatrix]
  gen1 n_=$rows
  matrix x_=iden(n_)

  * Allow up to 20 iterations (but we probably don't need
  * that many)
  do #=1,20
    matrix x_=.5*(x_+a_*inv(x_))
    * See how close we are by first turning the matrix
    * into a vector
```

```shazam```
matrix c_=vec(x_*x_)-vec(a_)
gen1 nc =$rows
* Get the sum of squared discrepancies
matrix cc_=c_'c_
* If we have converged then stop the iterations
sample 1 nc_
endif(c_.lt.1e-15)
endo

atitle_: Number of iterations
print atitle_ $do / noname
matrix [xmatrix]=x_

delete / all_
set doecho
output
procend

set echo

The input to this procedure is the matrix $A_-$ and the solution will be in the matrix $X_-. \text{An example is to find the square root of the matrix:}

\[
\begin{bmatrix}
10 & 5 & 3 \\
5 & 12 & 2 \\
3 & 2 & 11
\end{bmatrix}
\]

Assume that the $SQRTM$ procedure is contained in the file $SQRTM$. SHAZAM will automatically search for the $SQRTM$ procedure if it has not been previously defined in the command file. SHAZAM will search the directory specified by the $FILE \text{ PROCPATH}$ statement or look in the default directory if there is no defined $PROCPATH$. For example, if the file $SQRTM$ were in an alternate folder such as $C:\SHAZAM\PROCS\SQRTM$ then the $PROCPATH$ should be defined as:

\textbf{file proopath c:\shazam\procs\}

The SHAZAM command file will be:

\texttt{sample 1 3}
\texttt{read a / rows=3 cols=3}
\texttt{10 5 3}
\texttt{5 12 2}
\texttt{3 2 11}
\texttt{amatrix:a}
\texttt{xmatrix:x}
exec sqrtm
print a x

* Check the result
matrix xx=x*x
print xx

The output from this exercise will be:

\[
\begin{array}{ccc}
1 & 3 & 1.000000 \\
3 & 1 & 3.000000 \\
5 & 2 & 5.000000 \\
5 & 3 & 3.000000 \\
1 & 2 & 10.00000 \\
2 & 3 & 2.000000 \\
3 & 3 & 11.00000 \\
\end{array}
\]

**Black-Scholes Option Pricing Model**

The Black-Scholes [1973] equation gives a formula for pricing call options. The formula gives the value of the call option at time \( t \) as a function of the current price of the stock, the exercise price of the option, the time to expiration, the risk free interest rate and the standard deviation of the stock’s return. A formula can also be applied for pricing put options. The Black-Scholes option pricing formula can be implemented with the `CALL` and `PUT` commands as described in the chapter *FINANCIAL TIME SERIES*. A demonstration of the option pricing calculations for assets with no dividends is shown in the procedure below.

proc bs
* INPUTS: [K] EXERCISE PRICE
* [S] STOCK PRICE
* [SIG] STANDARD DEVIATION
* [TAU] TIME TO EXPIRATION
* [R] RISK FREE INTEREST RATE
* OUTPUTS: [C] CALL PRICE  
* [P] PUT PRICE

genr d1_=(log([s]/[k])+([r]+([sig]**2)/2)*[tau])/([sig]*sqrt([tau]))
genr d2_=[d1_]-[sig]*sqrt([tau])
genr [c]=[s]*ncdf(d1_)-[k]*exp(-[r]*[tau])*ncdf(d2_)
genr [p]=-[s]*ncdf(-d1_)+[k]*exp(-[r]*[tau])*ncdf(-d2_)

print [s] [k] [c] [p]

procend

To run the BS PROC, one needs only to set the inputs as illustrated in the SHAZAM commands:

```shazam
sample 1 1
read exprice sprice
50 50
sig:.35
r:.08
tau:.25
k:exprice
s:sprice
c:call
p:put
exec bs
print [c] [p]
```

This produces the output below. Note that a listing of the PROC and all commands occur because no options were used to suppress this output.

```
| PROC BS |
|----------
| * INPUTS: [K] EXERCISE PRICE |
| * [S] STOCK PRICE |
| * [SIG] STANDARD DEVIATION |
| * [TAU] TIME TO EXPIRATION |
| * [R] RISK FREE INTEREST RATE |
| * OUTPUTS: [C] CALL PRICE |
| * [P] PUT PRICE |
| * GENR D1_=(LOG([S]/[K])+([R]+([SIG]**2)/2)*[TAU])/([SIG]*SQRT([TAU])) |
| * GENR D2_=[D1_]-[SIG]*SQRT([TAU]) |
| * GENR [C]=[S]*NCDF(D1_)-[K]*EXP(-[R]*[TAU])*NCDF(D2_)
| * GENR [P]=-[S]*NCDF(-D1_)+[K]*EXP(-[R]*[TAU])*NCDF(-D2_)
| * PRINT [S] [K] [C] [P] |
| PROCEND |
| READ EXPRICE SPRICE |
| 2 VARIABLES AND 1 OBSERVATIONS STARTING AT OBS 1 |
| SIG:.35 |
| R:.08 |
| TAU:.25 |
| K:EXPRICE |
| S:SPRICE |
| C:CALL |
| P:PUT |
| EXEC BS |
| PROC BS |
```
From the output one can see that the Black-Scholes model predicts a call option price of $3.96 and a put option price of $2.97.

It is also possible to write a procedure to compute the Black-Scholes implied volatility given the current stock price, strike price, interest rate, time to maturity and call price. This requires an iterative solution algorithm. The computational details are described in the chapter *FINANCIAL TIME SERIES*. The SHAZAM PROC is:

```shazam
proc impvol
set nodoecho
* program to compute black-scholes implied volatility
* inputs:
 [s] stock price
 [k] strike price
 [r] interest rate, example .12
 [tau] time to maturity in years, example .25
 [c] call price

 genr starts_ = abs(log([s]/[k])+[r]*[tau])*(2/([tau]))
 genr sig_ = sqrt(starts_)

 do #=1,20
 genr d1_ = (log([s]/[k])+(r)+sig_*sig_/2)*[tau]/(sig_*sqrt([tau]))
 genr fn_ = exp(-d1_*d1_/2)/sqrt(2*3.14159)
 genr fprime_ = [s]*sqrt([tau])*fn_
 genr d2_ = d1_ - sig_*sqrt([tau])
 genr c_ = [s]*ncdf(d1_)-[k]*exp(-[r]*[tau])*ncdf(d2_)
 genr sig_ = sig_ - (c_-[c])\fprime_\endif(abs(c_-[c]).lt.0.00001)
 endo

 print sig_ c_
procend
```

To run the PROC use the SHAZAM commands:
* An Example
sample 1 1
read stock strike call / list
  100  125   2
s:stock
k:strike
c:call
r:.12
tau:.25
exec impvol

* Another Example
read stock strike call / list
  122  125   3
s:stock
k:strike
c:call
r:.1
tau:.25
exec impvol

The output is:

```
|_* An Example
|_SAMPLE 1 1
|_READ STOCK STRIKE CALL / LIST
|_ 3 VARIABLES AND 1 OBSERVATIONS STARTING AT OBS 1
|_ STOCK STRIKE CALL
|_ 100.0000 125.0000 2.000000
|_S:STOCK
|_K:STRIKE
|_C:CALL
|_R:.12
|_TAU:.25
|_EXEC IMPVOL
|_PROC IMPVOL
- SET NODOECHO
 SIG_ C_
 0.4034792 2.000000
|_* Another Example
|_READ STOCK STRIKE CALL / LIST
|_ 3 VARIABLES AND 1 OBSERVATIONS STARTING AT OBS 1
|_ STOCK STRIKE CALL
|_ 122.0000 125.0000 3.000000
|_S:STOCK
|_K:STRIKE
|_C:CALL
|_R:.1
|_TAU:.25
|_EXEC IMPVOL
 SIG_ C_
 0.1215579 3.000000
```
Generating Multivariate Random Numbers

This example shows how to generate random numbers from a bivariate normal distribution for a given covariance matrix. The method is explained in Judge et al. [1988, Chapter 11A] and the corresponding chapter in the Judge Handbook. The MULTI PROC is included directly in the command file in this example.

```
set noecho

proc multi

* INPUTS: [SIGMA] DESIRED COVARIANCE MATRIX
* [N] SAMPLE SIZE
* OUTPUT: [MRAN] MATRIX OF RANDOM NUMBERS
* Do a Cholesky factorization of the Sigma Matrix
matrix p_=chol([sigma])
?genl k_=$rows
print p_

* Check it out
matrix check_=p_*iden(k_)*p_'
print check_

* Now use the P_ matrix to generate MRAN
sample 1 [n]
matrix e_=nor([n],k_)
matrix [mran]=e_*p_'

* Check the sample covariance of the original independent random numbers
stat e_ / pcov

* Now check the sample of correlated random numbers
stat [mran] / pcov
delete / all_

procend

set echo

* End of Proc
* Beginning of Calling Program
set ranfix
```
* READ IN A SIGMA MATRIX AND GENERATE 100 RANDOM VECTORS

read  s / rows=2 cols=2 list
5 2
2 8

* Specify the Inputs to the MULTI PROC

sigma:s
n:100
mran:u
exec multi

* Print the matrix

print  u

The output is:

|_SET NOECHO
|_* End of Proc
|_* Beginning of Calling Program
|_* READ IN A SIGMA MATRIX AND GENERATE 100 RANDOM VECTORS
|READ S / ROWS=2 COLS=2 LIST
   2 ROWS AND 2 COLUMNS, BEGINNING AT ROW 1
   ...SAMPLE RANGE IS NOW SET TO: 1 2
   S
   2 BY 2 MATRIX
   5.000000 2.000000
   2.000000 8.000000
|_* Specify the Inputs to the MULTI PROC
|_SIGMA:S
|_N:100
|_MRAN:U
|_EXEC MULTI
PROC MULTI
-       MATRIX P_=CHOL(S)
-       ?GEN1 K_=$ROWS
-       PRINT P_
-       P
   2.236068
   0.8944272 2.683282
-       MATRIX CHECK_=P_*IDEN(K_)*P_
-       PRINT CHECK_
-       CHECK
   2 BY 2 MATRIX
   5.000000 2.000000
   2.000000 8.000000
-       SAMPLE 1 100
-       MATRIX E=NOR(100,K_)
-       MATRIX U=E *P'
-       STAT E / PCOV

NAME   N   MEAN      ST. DEV   VARIANCE     MINIMUM       MAXIMUM
...NOTE...TREATING COLUMNS OF E AS VECTORS
E_  100 0.94483E-01  0.96477  0.93078      -2.9865       2.4730
E_  100 0.11050      0.99368  0.98740      -2.0836       2.6220

COVARIANCE MATRIX OF VARIABLES - 100 OBSERVATIONS
<table>
<thead>
<tr>
<th>NAME</th>
<th>N</th>
<th>MEAN</th>
<th>ST. DEV</th>
<th>VARIANCE</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>100</td>
<td>0.21127</td>
<td>2.1573</td>
<td>4.6539</td>
<td>-6.6781</td>
<td>5.5299</td>
</tr>
<tr>
<td>U</td>
<td>100</td>
<td>0.38100</td>
<td>2.7375</td>
<td>7.4937</td>
<td>-6.3243</td>
<td>6.4619</td>
</tr>
</tbody>
</table>

COVARIANCE MATRIX OF VARIABLES - 100 OBSERVATIONS

| U   | U   | 4.6539 |
| U   | 1.4113 | 7.4937 |

DELETE / ALL
PROCEND

| * Print the matrix |
| PRINT U |

100 BY 2 MATRIX

<table>
<thead>
<tr>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.6990535</td>
</tr>
<tr>
<td>-2.902652</td>
</tr>
<tr>
<td>-0.6460146</td>
</tr>
<tr>
<td>0.4849795</td>
</tr>
<tr>
<td>2.435809</td>
</tr>
<tr>
<td>etc.</td>
</tr>
</tbody>
</table>
43. SUMMARY OF COMMANDS

"The Sun never sets on the SHAZAM empire."
Kenneth J. White
1980

The following is a list of all the available SHAZAM commands and their available options. The underlined letters of each command and option are the acceptable abbreviations.

**ARIMA var**

- ALL, DN, GRAPHAC, GRAPHDATA, GRAPHDORC, GRAPHPAC, GRAPHERES, IAC, LOG, NOCONSTANT, NOWIDE, PITER, PLOTAC, PLOTDATA, PLOTFORC, PLOTpac, PLOTRES, RESTRICT, START, WIDE, ACF=, BEG=, END=, COEF=, COV=, FBEG=, FCSE=, FEND=, ITER=, NAR=, NDIFF=, NLAG=, NLAGP=, NMA=, NSAR=, NSDIFF=, NSMA=, NSPAN=, PACF=, PREDICT=, PSI=, RESID=, SIGMA=, START=, STDERR=, STEPSIZE=, TESTSTAT=, TRATIO=.

**AUTO depvar indeps**

- ANOVA, DLAG, DN, DROP, DUMP, GE, GS, LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX, MISS, ML, NOCONSTANT, NOPITER, NOWIDE, PAGAN, PCOR, PCOV, RESTRICT, RSTAT, WIDE, BEG=, END=, COEF=, CONV=, COV=, GAP=, ITER=, NMISS=, NUMARMA=, ORDER=, PREDICT=, RESID=, RHO=, SRHO=, STDERR=, TRATIO=.

**AXISFMT statement**

- No options.

**BAYES options**

- NOANTITHET, NORMAL, PSIGMA, DF=, NSAMP=, OUTUNIT=.

**BOX depvar indeps**

- ACCUR, ALL, ANOVA, AUTO, DN, DUMP, FULL, GE, LIST, MAX, NOCONSTANT, PCOR, PCOV, RESTRICT, RSTAT, TIDWELL, UT, BEG=, END=, COEF=, COV=, LAMBDA=, LAME=, LAMI=, LAMS=, PREDICT=, RESID=, RHO=.
CALL vars
   AMERICAN, BLACK, EQUAL, IMPVOL, BARRIER=, BEG=, END=, DIVIDEND=, NUMTIME=, OPTIONP=, PREDICTP=, PREDICTV=, RISKFREE=, SIGMA=, STRIKEPRICE=, TIME=, UP=, DOWN=

CHECKOUT
   No options.

COEF names values
   No options.

COINT vars
   DN, DUMP, LOG, MAX, BEG=, END=, NDIFF=, NLAG=, RESID=, SIGLEVEL=, TESTSTAT=, TYPE=

COMPRESS
   No options.

CONFID var1 var2
   APPEND, AXIS, GRAPH, HOLD, NOAXIS, NOBLANK, NOFLOT, NOMID, NORMAL, NOTPLOT, NOWIDE, SYMBOL, WIDE, COEF1=, COEF2=, COMMFILE=, COVAR12=, DEVICE=, DF=, FCRIT=, OUTPUT=, POINTS=, PORT=, TCRIT=, VARI=, VAR2=, XMAX=, XMIN=, YMAX=, YMIN=.

COPY fromvar(s) tovar
   FCOL=, FROW=, TCOL=, TROW=.

DELETE vars
   ALL, ALDATA.

DEMO
   START.

DERIV var res=equation
   No options.

DIAGNOS options
   ACE, BACKWARD, BOOTLIST, CHOWTEST, CTEST, GRAPH, HANSEN, HET, JACKKNIFE, LIST, MAX, NORECEST, NORECRESID, NOWHITE, NOWIDE, RECEST, RECRESID, RECUR, RESET, WHITE, WIDE, BOOTSAMP=, BOOTUNIT=, CHOWONE=, GQOBS=, MHET=, RECUUNIT=, SIGLEVEL=.

DIM var size
   No options.

DISPLAY option
   Options same as for the SET command.
SUMMARY OF COMMANDS

DISTRIB vars  
INVERSE, LLF, Nolist, Accuracy=, Beg=, End=,  
Bign=, BigX=, C=, Cdf=, Critical=, DF=, DFvec=,  
DF1=, DF2=, EIGENVAL=, H=, K=, Kurtosis=,  
Lambda=, Limit=, Mean=, N=, Neigen=,  
Noncen=, P=, PDF=, Q=, S=, Skewness=, Type=, v=,  
Var=, X=.

DO dovar=beg,end,inc  
No options.

DUMP option  
ADDCOM, ASCII, DATA, DATCOM, FCOM, GENCOM,  
INFCOM, IQCOM, KADD, LODCOM, MACOM,  
NLCOM, OCOM, OLSCOM, OPTCOM, OSCOM,  
RANCOM, SCNCOM, SYSCOM, TEMCOM, VCOM,  
VLCOM, VNAME, VPLCOM, VTCOM, VTECOM,  
VTICOM.

END  
No options.

ENDIF (equation)  
No options.

ENDO  
No options.

EQ equation  
No options.

EXEC proc_name  
No options.

FC depvar indeps  
AFCSE, BLUP, IBLUP, Dynamic, fixed, Gf, List,  
Max, Meanpred, Noconstant, Percent,  
Upper, Beg=, End=, Coef=, CSnum=, Estend=,  
FCSE=, Limit=, Model=, NCross=, Order=,  
Poolse=, Predict=, Resid=, Rho=, Srho=.

FILE option filename  
Option can be unit from 11-49 or the keywords: CD,  
Close, delete, helpdemo, input, keyboard,  
List, output, path, plotpath, print,  
Proccpath, pwd, screen or temp.

FLS depvar indeps  
Graph, Max, Noconstant, Pcoef, Beg=, End=,  
Coef=, Delta=, Predict=, Resid=.
FORMAT statement  No options.

FUZZY vars  DUMP, GRAPHDATA, GRAPHRULE, MEDIAN, 
NOLIST, NOPMATRIX, NOSTANDARD, PASSOC, 
PBREAK, BEG=, END=, CMA=, DEGREES=, PREDICT=, 
RMA=, RULES=, WEIGHT=.

GENR newvar=equation  No options.

GEN1 equation  No options.

GLS depvar indeps  ANOVA, BLUP, DLAG, DN, DUMP, FULLMAT, GF, 
HETCOV, LININV, LINLOG, LIST, LOGINV, LOGLIN, 
LOGLOG, MAX, NOCONSTANT, NOMULSIGSQ, 
PCOR, PCOV, RSTAT, UT, BEG=, END=, COEF=, COV=, 
OMEGA=, OMINV=, PMATRIX=, PREDICT=, RESID=, 
STDERR=, TRATIO=.

GME depvar indeps  DEVIATION, LININV, LINLOG, LIST, LOGINV, 
LOGLIN, LOGLOG, NOCONSTANT, PCOV, RSTAT, 
BEG=, END=, COEF=, CONV=, COV=, ITER=, LOGEPS=, 
PITER=, PREDICT=, QPRIOR=, RESID=, START=, 
STDERR=, TRATIO=, UPRIOR=, VENTROPY=, 
ZENTROPY=.

GRAPH depvars indep  APPEND, AXIS, AXISFMT, HISTO, KEY, LINE, 
LINEONLY, NOAXIS, NOKEY, RANGE, TIME, 
TIMEFMT, WIDE, BEG=, END=, COMMFILE=, 
DATAFILE=, DEVICE=, GROUPS=, OUTPUT=, PORT=.

HELP command  ARIMA, AUTO, AXISFMT, BAYES, BOX, CALL, 
CHECKOUT, COEF, COINT, COMPRESS, CONFID, 
COPY, DELETE, DEMO, DERIV, DIAGNOS, DIM, 
DISPLAY, DISTRIBUT, DO, DUMP, END, ENDF, ENDO, 
EQ, ERROR, FC, FILE, FLS, FORMAT, FUZZY, GENR, 
GEN1, GLS, GME, GRAPH, HELP, HET, IF, IF1, INDEX, 
INST, INTEG, LAMBDA, LOGIT, LP, MATRIX, MENU, 
MLE, NAMES, NL, NONPAR, OLS, PAR, PAUSE, PC, 
PLOT, POOL, PORTFOLIO, PRINT, PROBIT, PUT,
SUMMARY OF COMMANDS

READ, RENAME, RESTRICT,REWIND, ROBUST, SAMPLE, SET, SIZE, SKIPIF, SMOOTH, SORT, STAT, STOCKGRAPH, STOP, SYSTEM, TEST, TIME, TIMEFMT, TITLE, TOBIT, WRITE, 2SLS.

HET depvar indeps (exogs) DUMP, LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX, NOCONSTANT, NOWIDE, NUMERIC, OPGCOV, PCOR, PCOV, PRESAMP, RSTAT, WIDE, ARCH=, ARCHM=, BEG=, END=, COEF=, CONV=, COV=, GARCH=, GMATRIX=, ITER=, MACH=, METHOD=, MODEL=, PITER=, PREDICT=, RESID=, START=, STDERR=, STDRESID=, STEPSIZE=, TRATIO=.

IF (expression) No options.

IF1 (expression) No options.

INDEX p1 q1...pn qn ALTERN, CHAIN, EXPEND, NOALTERN, NOLIST, BASE=, BEG=, END=, DIVISIA=, FISHER=, LASPEYRES=, PAASCHE=, QDIVISIA=, QFISHER=, QLASPEYRES=, QPAASCHE=.

INST dep ind (inst) Options same as for the 2SLS command.

INTEG var lo up res=equ No options.

LAMBD A var=value No options.

LOGIT depvar indeps DUMP, LIST, LOG, MAX, NOCONSTANT, NONORM, PCOR, PCOV, RSTAT, BEG=, END=, COEF=, CONV=, COV=, INDEX=, ITER=, PITER=, PREDICT=, STDERR=, TRATIO=, WEIGHT=.

LP c A b DUMP, MIN, DSLACK=, DUAL=, ITER=, PRIMAL=, PSLACK=.

MATRIX newmat=equation No options.

MENU No options.
<table>
<thead>
<tr>
<th>MLE depvar indeps</th>
<th><strong>ANOVA, DUMP, GF, LININV, LINLOG, LIST, LM, LOGINV, LOGLIN, LOGLOG, MAX, NOCONSTANT, NONORM, PCOR, PCOV, RSTAT, BEG=, END=, COEF=, CONV=, COV=, IN=, OUT=, ITER=, METHOD=, PREDICT=, PITER=, RESID=, STDERR=, TRATIO=, TYPE=, WEIGHT=</strong>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAMEFMT statement</td>
<td>No options.</td>
</tr>
<tr>
<td>NAMES options</td>
<td><strong>LIST</strong></td>
</tr>
<tr>
<td>NL neq (exogs)</td>
<td><strong>ACROSS, AUTO, DRHO, DUMP, EVAL, GENRVAR, LIST, LOGDEN, MINFUNC, MAXFUNC, NOCONEXOG, NOPSIGMA, NUMCOV, NUMERIC, OPGCOV, PCOV, RSTAT, SAME, SOLVE, AUTOCOV= BEG=, END=, COEF=, CONV=, COV=, GMM=, GMMOUT=, IN=, ITER=, METHOD=, DN, HYBRID SAINTER= SACONV= SAUPPER= SALOWER= SANEPS= SANS= SANT= SATRF= SAUPFAC= SALOWFAC=, NCOEF=, ORDER=, OUT=, PITER=, PREDICT=, RESID=, SIGMA=, START=, STDERR=, STEPSIZE=, TRATIO=, ZMATRIX=</strong>.</td>
</tr>
<tr>
<td>NONPAR depvar indeps</td>
<td><strong>DENSITY, GRAPH, LIST, PCOEF, BEG=, END=, BRHO=, COEF=, DELTA=, FCSE=, HATDIAG=, INCOVAR=, ITER=, METHOD=, PREDICT=, RESID=, RWEIGHTS=, SIGMA=, SMATRIX=, SMOOTH=</strong>.</td>
</tr>
<tr>
<td>OLS depvar indeps</td>
<td><strong>ANOVA, AUXRSQR, DFBETAS, DLAG, DN, DUMP, DWPVALUE, GF, GRAPH, HETCOV, INFLUENCE, LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX, NOCONSTANT, NOMULSIGSQ, NONORM, PCOR, PCOV, PIL, PLUSH, REPLICATE, RESTRICT, RSTAT, UT, WIDE, AUTOCOV=, BEG=, END=, COEF=, COV=, FE=, FX=, HATDIAG=, IDVAR=, INCOEF=, INCOVAR=, INDW=, INSIG2=, METHOD=, NPOP=, PCINFO=, PCOMP =, PE=, PX=, PREDICT=, RESID=, RIDGE=, STDERR=, TRATIO=, WEIGHT=</strong>.</td>
</tr>
</tbody>
</table>
SUMMARY OF COMMANDS

**PAR number**
No options.

**PAUSE**
No options.

**PC vars**
COR, LIST, MAX, PCOLLIN, PEVEC, PFM, PRM, RAW, SCALE, BEG=, END=, EVAL=, EVEC=, MAXFACT=, MINEIG=, NC=, PCINFO=, PCOMP=.

**PLOT depvars indep**
ALTERNATE, HISTO, HOLD, NOBLANK, NOPRETTY, NOSAME, NOWIDE, PAUSE, RANGE, SAME, TIME, WIDE, BEG=, END=, GROUPS=, SYMBOL=, XMAX=, XMIN=, YMAX=, YMIN=.

**POOL depvar indeps**
ANOVA, ARI, CORCOEF, DLAG, DN, DUMP, FIXED, FULL, GE, HETCOV, LININV, LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX, MULSIGSQ, NOCONSTANT, OLS, PCOR, PCOV, RESTRICT, RSTAT, SAME, UT, BEG=, END=, COEF=, CONV=, COV=, CSINDEX=, ITER=, NC=, NCROSS=, NTIME=, PREDICT=, RESID=, RHO=, STDERR=, TRATIO=.

**PORTFOLIO vars**
EQUALWEIGHT, GRAPHDATA, GRAPHFONT, GRAPHLINE, INRATES, LIST, PFRONTIER, SHARES, WEIGHTS, WIDE, BEG=, END=, INDEX=, RETURNS=, RISKFREE=, RISKS=.

**PRINT vars**
BYVAR, FORMAT, NEWLINE, NEWPAGE, NEWSHEET, NONAMES, NOWIDE, WIDE, BEG=, END=.

**PROBIT depv indeps**
DUMP, LIST, LOG, MAX, NOCONSTANT, NONORM, PCOR, PCOV, RSTAT, BEG=, END=, COEF=, CONV=, COV=, IMR=, INDEX=, ITER=, PITER=, PREDICT=, STDERR=, TRATIO=, WEIGHT=.

**PROC** proc_name
No options.

**PROCEND**
No options.
SUMMARY OF COMMANDS

**PUT** *vars*  
Options same as for the **CALL** command.

**QP** *c Q A b*  
CHOLSPEC DUMP MIN NEGDEF PDUAL UNCONST  
CONV= DIAGR= DUAL= IFACT= ITER= LAGRANGE=  
LOWER= LOWSCAL= MEQ= METHOD= PRIMAL=  
UPPER= UPSCAL= ZERO=  

**READ (unit) vars**  
BINARY, BYVAR, CLOSE, DB, DIF, EOF, FORMAT,  
LIST, NAMES, NOREWIND, REWIND, BEG=, END=,  
CHARVARS=, COLS=, ROWS=, SKIPLINES=.

**RENAME** *old new*  
No options.

**RESTRICT** *equation*  
No options.

**REWIND** *unit*  
No options.

**ROBUST** *depvar indeps*  
FIVEQUAN, GASTWIRT, GRAPH, LAE, LININV,  
LINLOG, LIST, LOGINV, LOGLIN, LOGLOG, MAX,  
NOCONSTANT, PCOR, PCOV, RSTAT, TUKEY,  
UNCOR, BEG=, END=, COEF=, CONV, COV=, DIFF=,  
ITER=, MULTIT=, PREDICT=, RESID=, STDERR=,  
THETA=, THETAB=, THEETA=, THETAI=, TRATIO=,  
TRIM=.

**SAMPLE** *beg end beg end*  
No options.

**SET** *option*  
BATCH, BYVAR, CC, CONTINUE, CPUTIME, DELETE,  
DOECHO, DUMP, ECHO, GRAPH, LASTCOM, LCUC,  
MAX, NOBYVAR, NOCC, NOCONTINUE, NODELETE,  
NOGRAPH, NOLCUC, NOSKIP, NOOUTPUT,  
NOSAMPLE, NOSCREEN, NOSTATUS, NOWARN,  
NOWARNMISS, NOWARNSKIP, NOWIDE, OPTIONS,  
OUTPUT, PAUSE, RANFIX, SAMPLE, SCREEN, SKIP,  
SKIPMISS STATUS, TALK, TERMINAL, TIMER,  
TRACE, WARN, WARNSKIP, WARNMISS, WIDE,  
COMLEN=, MAXCOL=, MISSVALU=, OUTFUNIT=,  
RANSEED=.
SUMMARY OF COMMANDS

**SIZE maximum**
No options.

**SKIPIF(expression)**
No options.

**SMOOTH**
ADDITIVE, ARITH, CENTRAL, NOCENTRAL, HPFILTER, BEG=, END=, EMAVE=, LAMBDA=, MAVE=, NMA=, NSPAN=, SAMAVE=, SFAC=, WEIGHT=.

**SORT sortvar vars**
DESC, LIST, BEG=, END=.

**STAT vars**
ALL, ANOVA, BARTLETT, DN, MATRIX, MAX, PCOR, PCOV, PCP, PCPDEV, PFREQ, PMEDIAN, PRANKCOR, REPLICATE, SAMEOBS, SAMPsize=, WIDE, BEG=, END=, COR=, COV=, CP=, CPDEV=, MAXIM=, MEAN=, MEDIANS=, MINIM=, MODEs=, NPOP=, RANKCOR=, STDEV=, STEMplot=, SUMS=, VAR=, WEIGHT=.

**STOCKGRAPH vars**
AXISFMT, EMA, GRAPHDATA, GRAPHMA, GRAPHMACD, GRAPHVOL, LIST, SOMA, WIDE, BEG=, END=, BOLLINGER=, MALONG=, MAMACD=, MASHORT=.

**STOP**
No options.

**SYSTEM neq exogs**
DN, DUMP, FULL, GE, LIST, MAX, NOCONSTAnt, NOCONEXOG, PCOR, PCOV, PINVEv, PSIGMA, RESTRICT, RSTAT, COEF=, COEFMAT=, CONV=, COV=, IN=, OUT=, ITER=, PITER=, PREDICT=, RESID=, SIGMA=, STDERR=, TRATIO=.

**TEST equation**
No options.

**TIME beg freq var**
No options.

**TIMEFMT statement**
No options.

**TITLE title**
No options.
TOBIT depvar indeps

DUMP, LIST, MAX, NEGATIVE, NOCONSTANT, NONORM, PCOR, PCOV, UPPER, BEG=, END=, COEF=, CONV=, COV=, INDEX=, ITER=, LIMIT=, PITER=, PREDICT=, STDERR=, TRATIO=, WEIGHT=.

WRITE(unit) vars

APPEND, BINARY, BYVAR, CLOSE, DB, DIF, FORMAT, NAMES, NONAMES, NOREIND, REIND, WIDE, BEG=, END=.

2SLS depvar rhsvars (exogs)

DN, DUMP, GF, LIST, MAX, NOCONSTANT, NOCONEXOG, PCOR, PCOV, RESTRICT, RSTAT, BEG=, END=, COEF=, COV=, PREDICT=, RESID=, STDERR=, TRATIO=. 
44. NEW FEATURES IN SHAZAM

"Everything that can be invented has been invented."
Charles H. Duell
U.S. Patent Office, 1899

There are many differences between SHAZAM Versions. This appendix itemizes a few of these differences. SHAZAM is a continuously expanding program with many new capabilities.

**VERSION 5.0**

Before Version 5.0 was released, SHAZAM was completely rewritten to make it a modern and flexible package. Users of Versions 1.0-4.6 found that they had entered a new world of econometric computing. A matrix programming language had been added and all procedures had been rewritten to provide the flexibility that researchers require. Versions prior to Version 5.0 are called OLD-OLD SHAZAM and should no longer be used by anyone except Econometric Historians.

**VERSION 5.1**

The following are some of the major changes and additions to Version 5.1 of SHAZAM:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NEW AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUT</td>
<td>LLF, S= and V=</td>
</tr>
<tr>
<td>GENR</td>
<td>MOD(X,Y)</td>
</tr>
<tr>
<td>MLE</td>
<td>LM</td>
</tr>
<tr>
<td>OLS</td>
<td>DFBETAS, INFLUENCE, REPLICATE, HATDIAG= and UT=</td>
</tr>
<tr>
<td>PROBIT /LOGIT</td>
<td>NONORM</td>
</tr>
<tr>
<td>SET</td>
<td>NOWIDE, WIDE and RANSEED=</td>
</tr>
<tr>
<td>STAT</td>
<td>WEIGHT=</td>
</tr>
<tr>
<td>TOBIT</td>
<td>NONORM</td>
</tr>
</tbody>
</table>
A large number of changes were made to SHAZAM between Versions 5.1 and 6.0. Version 6.0 SHAZAM is capable of computing Box-Jenkins Models (ARIMA) Time-Series models, Bayesian Inequality Restrictions, Confidence Intervals and Ellipses, and Robust Regressions. It can also perform a variety of Regression Diagnostic Tests including many Heteroskedasticity Tests, Recursive Residuals, CUSUM tests and Specification Error Tests as well as Jackknife and Bootstrap estimates. Furthermore, many new options were developed for existing commands. The following are some of the major new commands and options found in Version 6.0 of SHAZAM:

**COMMAND**  
**NEW AVAILABLE OPTIONS**

**ARIMA**  
New Command:

*Identification Phase:*
- ALL, NOWIDE, PLOTAC, PLODATA, PLOTPAC, WIDE, BEG=END=, NDIFF=, NLAG=, NLAGP=, NSDIFF= and NSPAN=

*Estimation Phase:*
- DN, NOCONSTANT, PITER, PLOTRES, START, BEG=END=, COEF=, ITER=, NAR=, NDIFF=, NMA=, NSAR=, NSDIFF=, NSMA=, NSPAN= and PREDICT=

*Forecasting Phase:*
- LOG, NOCONSTANT, PLOTFORC, COEF=, FBEG= FEND=, NAR=, NDIFF=, NMA=, NSAR=, NSDIFF=, NSMA=, NSPAN=, PREDICT= and RESID=

**AUTO**  
NOWIDE, PAGAN and WIDE

**BAYES**  
New Command:
- NOANTHITHE, NORMAL, NSAMP= and OUTUNIT=

**CONFID**  
New Command:
- EGA, GRAPHICS, HERCULES, HOLD, NOBLANK, NOWIDE, SYMBOL, TOSHIBA and WIDE

**DIAGNOS**  
New Command:
- ACF, BACKWARD, CHOWTEST, HET, JACKKNIFE, LIST, MAX, NOWIDE, RECEST, RECRESID, RECUR, RESET, WIDE, GQOBS=, RECUNIT= and SIGLEVEL=

**DISTRIB**  
LLF, H=, P= N=, S= V= and TYPE=BINOMIAL

**FC**  
FCSE=
**NEW FEATURES IN SHAZAM**

| MATRIX | Concatenation ( | ), SYM(matrix), TRI(matrix), VEC(matrix) and VEC(matrix,nrows) |
|--------|---------------------------------------------------------------|
| MENU   | Gives the list of available commands in SHAZAM while in interactive mode. |
| NL     | LOGDEN, NUMCOV, START=, STDERR=, STEPSIZE= and TRATIO= |
| OLS    | GF and INCOVAR= |
| PLOT   | ALTERNATE, EGA, GRAPHICS, HERCULES and TOSHIBA |
| POOL   | MULSIGSQ, CORCOEF= and RHO= |
| PC     | PCOLLIN, RAW and SCALE |
| PROBIT / LOGIT | IMR= and WEIGHT= |
| ROBUST | New command: FIVEQUAN, GASTWIRT, LAE, LINLOG, LIST, LOGLIN, LOGLOG, MAX, PCOR, PCOV, RSTAT, TUKEY, UNCOR, BEG= END=, COEF=, CONV=, COV=, DIFF=, ITER=, MULTIT=, RESID=, STDERR=, THETA=, THETAB=, THETAE=, THETAI=, TRATIO= and TRIM= |
| SAMPLE | Formerly called SMPL |
| SYSTEM | COEF=, COEFMAT=, COV=, PITER= and SIGMA= |
| TOBIT | NONORM |
| 2SLS  | COV= |

**VERSION 6.1**

Further additions were made after Version 6.0 to make SHAZAM Version 6.1 a more powerful program than ever before. The Macintosh version of SHAZAM now supports the Macintosh interface and graphics, and many other substantial changes have been made. Some of the major new options are:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NEW AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DLAG</td>
</tr>
<tr>
<td>CONFID</td>
<td>GOAWAY, PAUSE, PRINT and Macintosh GRAPHICS</td>
</tr>
<tr>
<td>DIAGNOS</td>
<td>BOOTLIST, NORECEST, NORECRESID, BOOTSSAMP= and MHET=</td>
</tr>
</tbody>
</table>
NEW FEATURES IN SHAZAM

DISPLAY
CPUTIME, SCREEN and WARNSKIP

DLAG
Command is no longer needed. Distributed lags are now specified on AUTO, BOX, GLS, OLS and POOL commands directly. The command is redesigned to make Almon Lag estimation even easier.

FC
AFCSE, CSNUM=, ESTEND=, LIMIT= and POOLSE=

FILE
Available for many machines:
CLOSE, INPUT, LIST, OUTPUT and SCREEN

Available for the Macintosh only:
PRINT

GLS
DLAG

MATRIX
More flexible definition of matrix multiplication added.

NL
GENRVAR and OPGCOV

OLS
DLAG

PLOT
GOAWAY, PAUSE, PRINT and Macintosh GRAPHICS

POOL
DLAG, MULSIGSQ and PCOV

READ
CLOSE and SKIPLINES=

SET
NOSCREEN, NOWARNSKIP and WARNSKIP

STAT
SUMS=

WRITE
CLOSE

VERSION 6.2

Version 6.2 includes several new options on existing commands and a new command to estimate Heteroskedastic and ARCH models as well as new commands to compute derivatives and integrals. A new Macintosh interface has been developed. The OS/2 Version has been released and includes Presentation Manager Scrollable Windows and Graphics. The OS/2 Version allows massive amounts of virtual memory not available in the DOS version and allows multitasking and many other features. New options are:

COMMAND
NEW AVAILABLE OPTIONS
AUTO
NUMARMA=

CONFID
VGA

DERIV
New command:
\[ \text{var resultvar = equation} \]
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIB</td>
<td>BIGN=, BIGX= and TYPE=HYPERGEO</td>
</tr>
<tr>
<td>FILE</td>
<td>KEYBOARD and PATH</td>
</tr>
<tr>
<td>HELP</td>
<td>HET, DERIV and INTEG</td>
</tr>
<tr>
<td>HET</td>
<td>New command: DUMP, LIST, MAX, NOCONSTANT, NOWIDE, NUMERIC,</td>
</tr>
<tr>
<td></td>
<td>OPGCOV, PCOR, PCOV, PRESAMP, RSTAT, WIDE, ARCH=,</td>
</tr>
<tr>
<td></td>
<td>ARCHM=, BEG= END=, COEF=, CONV=, COV=, GARCH=,</td>
</tr>
<tr>
<td></td>
<td>ITER=, MACH=, METHOD=, MODEL=, PITER=, PREDICT=,</td>
</tr>
<tr>
<td></td>
<td>RESID=, START=, STDERR=, STDRESID=, STEPSIZE= and TRATIO=</td>
</tr>
<tr>
<td>INTEG</td>
<td>New command:</td>
</tr>
<tr>
<td></td>
<td>var lower upper resultvar = equation</td>
</tr>
<tr>
<td>MATRIX</td>
<td>FACT(matrix)</td>
</tr>
<tr>
<td>NL</td>
<td>MINFUNC, MAXFUNC, SOLVE and ZMATRIX=</td>
</tr>
<tr>
<td>OLS</td>
<td>AUXRSQR and AUTOCOV=</td>
</tr>
<tr>
<td>PLOT</td>
<td>VGA</td>
</tr>
<tr>
<td>READ</td>
<td>DIF and TSP</td>
</tr>
<tr>
<td>SET</td>
<td>COLOR, CPUTIME, DELETE, LCUC, NOCOLOR, NODELETE,</td>
</tr>
<tr>
<td></td>
<td>NOLCUC, NOOUTPUT, OUTPUT and PAUSE</td>
</tr>
<tr>
<td>WRITE</td>
<td>DIF</td>
</tr>
</tbody>
</table>

**VERSION 7.0**

Version 7.0 offers a variety of new econometric techniques including a new command for Unit Roots and Cointegration testing and new options for model estimation by Nonlinear Two Stage Least Squares and Nonlinear Three Stage Least Squares and Generalized Method of Moments. $ERR$ is a new Temporary Variable to give Error Codes. An important new feature is the capability to program SHAZAM procedures. An interface to the GNUPLOT package provides high quality graphics. In addition, system commands can be entered from a SHAZAM command prompt on some versions. A large number of minor improvements have also been made.

SHAZAM is maintained as a machine portable system and versions are now available for the following operating systems: DOS Extended Memory Version for 80386 and 80486 PC Computers, the NeXT computer, WINDOWS, OS/2 Version 2.0 and the SUN SPARCstation (in addition to operating systems supported by previous SHAZAM versions).
Some of the new options are:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NEW AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ARIMA</strong></td>
<td><strong>Identification phase:</strong>&lt;br&gt;GNU, IAC, ACF=, PACF= and TESTSTAT=&lt;br&gt;<strong>Estimation phase:</strong>&lt;br&gt;GNU, RESTRICT, ACF=, COV=, START=, STDERR=, STEPSIZE=, TESTSTAT= and TRATIO=&lt;br&gt;<strong>Forecasting phase:</strong>&lt;br&gt;GNU, FCSE= and SIGMA=</td>
</tr>
<tr>
<td><strong>AUTO</strong></td>
<td>NOPITER&lt;br&gt;Tests for autocorrelation after correcting for autocorrelation.</td>
</tr>
<tr>
<td><strong>COINT</strong></td>
<td>New command for Cointegration and Unit Roots:&lt;br&gt;DN, DUMP, LOG, MAX, BEG=, END=, NDIFF=, NLAG=, TESTSTAT= and TYPE=.&lt;br&gt;</td>
</tr>
<tr>
<td><strong>CONFID</strong></td>
<td>GNU</td>
</tr>
<tr>
<td><strong>DELETE</strong></td>
<td>ALL=</td>
</tr>
<tr>
<td><strong>DISTRIBUT</strong></td>
<td>TYPE=(BURRII, BURRIII, BURRXII, DAVIES), DFVEC=, K=, LAMBDA=, LIMIT=</td>
</tr>
<tr>
<td><strong>DO</strong></td>
<td>Up to 8 levels are now allowed.</td>
</tr>
<tr>
<td><strong>EXEC</strong></td>
<td>A new command to execute SHAZAM procedures.</td>
</tr>
<tr>
<td><strong>FILE</strong></td>
<td>PROCPATH, HELPDEMO, PROC</td>
</tr>
<tr>
<td><strong>GEN1</strong></td>
<td>Calculator Mode</td>
</tr>
</tbody>
</table>
HET          GMATRIX=
Exogenous variables may be included in the ARCH variance
equation. Some changes were made to the estimation algorithm so
that results may be different from previous versions.

IF1          IF command for the first observation only.

LP           New command for Linear Programming:
DUMP, MIN, PRIMAL=, DUAL=, PSLACK=, DSLACK=, ITER=

MAP          This command has been removed.

MATRIX       Temporary variables are $ROWS and $COLS.

NL           NOCONEXOG, AUTCOV=, GMM=, PREDICT=, RESID=
Nonlinear Two Stage Least Squares, Nonlinear Three Least Squares
and Generalized Method of Moments are available.

OLS          AUTCOV= gives the Newey-West Autocorrelation Consistent
Covariance Matrix.

PLOT         An interface to the GNUPLOT package is available to provide high
quality graphics. The options are: GNU, KEY/NOKEY,
COMMFILE=, DEVICE=, OUTPUT= and PORT=.

PROC         Beginning of SHAZAM procedures.
PROCEND      End of SHAZAM Procedure.

SET          SKIPMISS, MISSVAL= options for missing values.

SYSTEM       NOCONEXOG

2SLS         NOCONEXOG

| VERSION 8.0 |

A SHAZAM World Wide Web page has been developed to offer a variety of useful
information and services related to SHAZAM.

Version 8.0 introduces the following new commands: FLS for the estimation of equations
with time-varying coefficients; NONPAR for nonparametric density estimation and
regression smoothing methods; and GME for equation estimation by generalized entropy
methods.

Program improvements include the following. New temporary variables are $PI that
contains the value of π and $PVAL that contains the p-value from some tests. On the OLS
command new temporary variables to save model selection test statistics reported with the 
**ANOVA** option are: **$FPE, $LAIC, $LSC, $GCV, $HQ, $RICE, $SHIB, $SC, and $AIC;** the 
**DLAG** option returns **$DURH,** and the **LM** option returns **$J.$** New options are:

<table>
<thead>
<tr>
<th><strong>COMMAND</strong></th>
<th><strong>NEW AVAILABLE OPTIONS</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>COINT</td>
<td>RESID=, SIGLEVEL=</td>
</tr>
<tr>
<td>DIAGNOS</td>
<td>CTEST</td>
</tr>
<tr>
<td></td>
<td>GNU can be used with the <strong>RECUR</strong> option to get a plot of the CUSUM and CUSUMSQ of the recursive residuals.</td>
</tr>
<tr>
<td>FILE</td>
<td>DELETE, TEMP</td>
</tr>
<tr>
<td>FLS</td>
<td>New command: GNU, MAX, NOCONSTANT, PCOEF, BEG=, END=, COEF=, DELTA=, PREDICT= and RESID=</td>
</tr>
<tr>
<td>GME</td>
<td>New command: DEVIATION, LINLOG, LIST, LOGLIN, LOGLOG, NOCONSTANT, PCOV, RSTAT, BEG=, END=, COEF=, CONV=, COV=, ITER=, LOGEPS=, PITER=, PREDICT=, QPRIOR=, RESID=, START=, STDERR=, TRATIO=, UPRIOR=, VENTROPY= and ZENTROPY=</td>
</tr>
<tr>
<td>HELP</td>
<td>ERROR, FLS, GME, NONPAR</td>
</tr>
<tr>
<td>NL</td>
<td>NOPSIGMA, SIGMA=</td>
</tr>
<tr>
<td>NONPAR</td>
<td>New command: DENSITY, GNU, LIST, PCOEF, BEG=, END=, BRHO=, COEF=, DELTA=, FCSE=, HATDIAG=, INCOVAR=, ITER=, METHOD=, PREDICT=, RESID=, RWEIGHTS=, SIGMA=, SMATRIX= and SMOOTH=</td>
</tr>
<tr>
<td>OLS</td>
<td>GNU, INDW=</td>
</tr>
<tr>
<td></td>
<td>The <strong>EXACTDW</strong> option has been renamed to <strong>DWPVALUE</strong> and the 200 observation limit has been removed.</td>
</tr>
<tr>
<td>PLOT</td>
<td>GNU can be used with the <strong>HISTO</strong> option.</td>
</tr>
<tr>
<td></td>
<td><strong>APPEND</strong> is available with the GNU option.</td>
</tr>
<tr>
<td>POOL</td>
<td>AR1, HETCOV and OLS</td>
</tr>
<tr>
<td>PROBIT /LOGIT</td>
<td>LOG</td>
</tr>
<tr>
<td>READ</td>
<td>The <strong>TSP</strong> option has been renamed to <strong>DB.</strong></td>
</tr>
<tr>
<td>ROBUST</td>
<td>GNU</td>
</tr>
</tbody>
</table>
SET SKIPMISS  Improved implementation. GENR commands set missing value
codes when computations involve a missing observation.

STAT     REPlicate, MEDIANS= and MODES=
WRITE    DB

VERSION 9.0

SHAZAM Professional Edition is a Windows version of SHAZAM available for computers
running Microsoft Windows 95/98/2000 and NT. The Professional edition of SHAZAM is a
high performance, multi-threaded, native 32 bit version of SHAZAM. It provides users
many features including a Data editor, Plot editor, Command Editor, and Project Viewer.

The maximum number of characters for a command line has been increased to 8192
characters. The LININV and LOGINV options are available with the OLS, AUTO, GLS,
GME, HET, MLE, POOL and ROBUST commands.

The GRAPH command provides an interface to the GNUPLot program for preparing
graphs and histograms. This replaces the PLOT command available in previous versions.
The PLOT command can be used to obtain plots that are printed with plain text characters
on the SHAZAM output. The GRAPH option replaces the GNU option on the CONFID,
DIAGNOS, FLS, NONPAR, OLS and ROBUST commands. On the ARIMA command the
GNU option is replaced by the options GRAPHAC, GRAPHDATA, GRAPHPAC,
GRAPHRES and GRAPHFORC.

Other new options are:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NEW AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXISFMT</td>
<td>New command.</td>
</tr>
<tr>
<td>CALL</td>
<td>New command: AMERICAN, BLACK, EQUAL, IMPVOL, BARRIER=, BEG=, END=, DIVIDEND=, NUMTIME=, OPTIONP=, PREDICTP=, PREDICTV=, RISKFREE=, SIGMA=, STRIKEPRICE=, TIME=, UP=, DOWN=</td>
</tr>
<tr>
<td>CONFID</td>
<td>The name $SIG2 can be specified to get a confidence interval for the error variance. The CONFID command can follow a STAT command for the calculation of interval estimates for the population mean.</td>
</tr>
</tbody>
</table>
DELETE ALCDATA
DIAGNOS HANSEN (for Hansen tests for parameter instability), HET (new test statistics for White's heteroskedasticity tests), RESET (new test statistics for the DeBenedictis and Giles FRESET tests).

DISTRIBUT TYPE=(BERNOULLI, CAUCHY, ERLANG, EXPONENTIAL, EXTREME, GEOMETRIC, LOGISTIC, LOGNORMAL, NEGBIN, PARETO, PASCAL, POISSON, POWER, WEIBULL) and X=

DUMP ASCII
FC MEANPRED
FILE CD, PLOTPATH and PWD
FUZZY New command:
DUMP, GRAPHDATA, GRAPHRULE, MEDIAN, NOLIST, NOPMATRIX, NOSTANDARD, PASSOC, PBREAK, BEG=, END=, CMA=, DEGREES=, PREDICT=, RMA=, RULES=, WEIGHT=

GLS HETCOV
GRAPH New command:
APPEND, AXIS, AXISFMT, HISTO, KEY, LINE, LINEONLY, NOAXIS, NOKEY, RANGE, TIME, TIMEFMT, WIDE, BEG=, END=, COMMFILE=, DATAFILE=, DEVICE=, GROUPS=, OUTPUT=, PORT=

NL GMMOUT=
MATRIX SEAS(nob,−ncross)
MLE TYPE=(POISSON, EPOISSON)
OLS PIL
POOL CSINDEX=
Estimation with unbalanced panels is available.

PORTFOLIO New command:
EQUALWEIGHT, GRAPHDATA, GRAPHRULE, GRAPHLINE, INRATES, LIST, PFRONTIER, SHARES, WEIGHTS, WIDE, BEG=, END=, INDEX=, RETURNS=, RISKFREE=, RISKS=

PUT New command:
Options same as for the CALL command.

READ NAMES, XLS
NEW FEATURES IN SHAZAM

SET BYVAR, CONTINUE, GRAPH / NOGRAPH, WARNMISS / NOWARNMISS

SMOOTHE New command: ADDITIVE, ARITH, CENTRAL, NOCENTRAL, BEG=, END=, EMAVE=, MAVE=, NMA=, NSPAN=, SAMAVE=, SFAC=, WEIGHT=

STAT ANOVA lists a two-way ANOVA table when the variables have equal observations. When only 2 variables are specified additional test statistics for equality of mean and variance are listed.

STOCKGRAPH New command: AXISFMT, EMA, GRAPHDATA, GRAPHMA, GRAPHMACD, GRAPHVOL, LIST, SOMA, WIDE, BEG=, END=, BOLLINGER=, MALONG=, MAMA, CD=, MASHORT=

TIMEFMT New command.

TOBIT NEGATIVE

WRITE APPEND, XLS

Incompatibilities with previous versions

In previous versions, the READ command set the NOREWIND option as the default. In Version 9.0, the READ command loads the data set starting at the first record of the data file. If multiple READ commands are used to load data sequentially from a data file, then the NOREWIND option must be specified. In previous versions, the WRITE command set the NOREWIND option as the default when a FILE command was used to assign a file to a unit number. The REWIND option is the default in Version 9.0. For the GENR and GEN1 commands the expression X**−A is not permitted. This should be entered as X**(−A). The expression −X**A is evaluated as −(X**A). That is, −X**A is interpreted as 0−X**A. In previous versions the expression −X**A was evaluated as (−X)**A. The SET NOUMINUS command can be used to obtain the priority of operations that was effective in previous SHAZAM versions.

VERSION 10

A large number of changes have been made to the Professional Edition between the original Version 9 release and Version 10. Along with an updated Integrated Development Environment (IDE), changes include the following. The existing command editor has been replaced with one designed specifically to support the new SHAZAM debugger as well as
other features. Large file performance has been greatly enhanced, new editing features and improved printing have been added. This version introduces the ability to debug SHAZAM from the command editor. The debugger provides menus, windows, and dialog boxes to access its tools. SHAZAM wizards allow commands to be created or procedures to be executed immediately by selecting variables and procedure options using a mouse.

In previous versions of SHAZAM Professional Edition output was presented as raw unformatted text. In this version, options are available to produce output in neatly arranged sections and tables to produce formatted output that is transportable to most modern word processors. More features are provided for data access and graphing. Changes to graphs are enabled through the properties dialog once graphs are added to the current project.

A quad precision version of SHAZAM is available for high precision work.

For programming in SHAZAM, the number of DO-loop levels is increased to 18. The maximum command length is increased to 16384 characters (from 8192). Other new options are:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NEW AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA</td>
<td>PSI=</td>
</tr>
<tr>
<td>DIAGNOS</td>
<td>NOWHITE</td>
</tr>
<tr>
<td>FC</td>
<td>FIXED</td>
</tr>
<tr>
<td>MLE</td>
<td>TYPE=(EBETA, MBETA)</td>
</tr>
<tr>
<td>NAMEFMT</td>
<td>New command.</td>
</tr>
<tr>
<td>OLS</td>
<td>NPOP=</td>
</tr>
<tr>
<td>POOL</td>
<td>FIXED</td>
</tr>
<tr>
<td>PROBIT/LOGIT</td>
<td>Marginal effects are reported.</td>
</tr>
<tr>
<td>READ</td>
<td>CHARVARS=</td>
</tr>
<tr>
<td>SMOOTH</td>
<td>HPFILTER, LAMBDA=</td>
</tr>
<tr>
<td>STAT</td>
<td>SAMEOBS, SAMPSIZE, NPOP=, STEMPLOT=</td>
</tr>
</tbody>
</table>

Version 11 incorporates numerous updates and architectural changes including:

- 32 Bit and 64 Bit Processor Support.
- Automatic Vectorization and Parallelization across all Processor Cores.
- A new Environment, including integrated graph, data and command editors.
- Workspace Management with Automatic READ features.
- Support for Excel Formats *.xlsx.
- Integrated Resources.
- Electronic version of this manual.
- SHAZAM Community Integration.
- Embedded licensing and Product Activation.
- Batch and Interactive command execution including: Console (interactive), Talk (interactive) and Immediate (interactive) Input capabilities.
- Graphing enhancements including new styling, options and smooth rendering.
- Hundreds of updated Textbook examples from recent textbooks.
- Menu and dialog driven Analytical techniques (Professional Edition)
- Improvements to the Data Connector (Professional Edition)
- Improvements to the debugger (Professional Edition)
- Formatted output enhancements (Professional Edition)

**COMMAND**

**NEW AVAILABLE OPTIONS**

**QP**

New Command to perform Bounded or Unbounded solutions to Quadratic Programming Problems, with or without equality or inequality constraints

CHOLSPEC DUMP MIN NEGDEF PDUAL UNCONSTR CONV= DIAGR= DUAL= IFACT= ITER= LAGRANGE= LOWER= LOWSCAL= MEQ= METHOD= PRIMAL= UPPER= UPSCAL= ZERO= TOL=

**NL**

Support for Simulated Annealing and automatic starting point detection for single and multiple equation models.

Small sample adjustment with the **NODN**.

DN NODN HYBRID SAI= SACONV= SAUPPER= SALOWER= SANEPS= SANS= SANT= SATRF= SAUPFAC= SALOWFAC=

_Incompatibilities with previous versions_
In SHAZAM 10 the XLS option on READ would read data directly from Microsoft Excel Workbooks. This capability has been removed in this version. Instead Microsoft Excel Workbook formats both old and new (*.xls and *.xlsx) can be opened directly from the Open button within the SHAZAM Environment. Click ‘Add to Workspace’ and select a filename to automatically convert these to SHAZAM Data. To write data to a Microsoft Excel Workbook use the WRITE statement to output SHAZAM Data. The file will appear within your SHAZAM Workspace after which you may open it within the SHAZAM Data Editor and then save it as a new Workbook. Please note that it is no longer required to have Microsoft Excel on the computer for SHAZAM to read and write Excel spreadsheets.

The SHAZAM READ and WRITE statements provide support for Fixed Format and Free Format and DIF Format data only.
REFERENCES


REFERENCES


Hildreth, C., and Lu, J.Y., "Demand Relations with Autocorrelated Disturbances", *Technical Bulletin* 276, Michigan State University Agricultural Experiment Station, May 1960.


REFERENCES


REFERENCES


INDEX

$ADR2, 104
$AIC, 106
$ANF, 105
$CDF, 97, 106
$DF, 104
$DURH, 106
$DW, 106
$ERR, 104
$FPE, 105
$GCV, 105
$HQ, 106
$JB, 106
$K, 105
$LAIC, 105
$LLF, 105
$LSC, 105
$MISS, 440
$N, 105
$R2, 105
$R2AN, 106
$R2OP, 106
$RAW, 105
$RHO, 106
$RICE, 106
$SC, 106
$SHIB, 106
$SIG2, 105
$SSE, 105
$SSR, 105
$SST, 105
$ZANF, 105
$ZSSR, 105
$ZSST, 105

? output suppressor, 451
= command suppressor, 451
2SLS
---
BEG= option, 349
COEF= option, 349
command, 348
COV= option, 349
DUMP option, 349
END= option, 349
GF option, 349
LIST option, 349
MAX option, 349
NOCONEXOG option, 349
NOCONSTANT option, 349
PCOR option, 349
PCOV option, 349
PREDICT= option, 349
RESID= option, 349
RESTRICT option, 349
RSTAT option, 349
STDERR= option, 349

TRATIO= option, 349
Abrahamse, A., 429
ABS function
GENR, 74
ACCUR option
BOX, 174
ACCU= option
DISTRIBUT, 422
ACF option
BACKWARD, 189
DIAGNOS, 189
ACF= option
ARIMA, 140, 147
ACROSS option
NL, 262
ADDITIVE option
SMOOTH, 365
AFCSE option
FC, 217
ALL option
ARIMA, 139
BOX, 174
DELETE, 444
STAT, 57
ALLDATA option
DELETE, 444
Almon, S., 206
ALTERNATE option
PLOT, 69
Amemiya, T., 260, 319
AMERICAN option
CALL, 381
PUT, 381
ANOVA option
AUTO, 163
BOX, 174
GLS, 237
MLE, 256
OLS, 20, 96
POOL, 307
STAT, 57
Antithetic Replication, 131
APPEND option
GRAPH, 65
WRITE, 39
AR1 option
POOL, 307
Arccosine, 80
ARCH models, 242
ARCH tests, 246
ARCH= option
HET, 244
ARCHM= option
INDEX

Bartlett's Homogeneity of Variance Test, 55
BASE= option
INDEX, 411
Bassett, G., 328
BATCH option
SET, 437
Baumol, W., 385
BAYES
command, 131
DF= option, 132
NOANTITHET option, 132
NORMAL option, 132
NSAMP= option, 132
OUTUNIT= option, 133
PSIGMA option, 132
Beach, C., 164, 167
BEG= option
2SLS, 349
AUTO, 163
BOX, 174
CALL, 381
COINT, 184
DISTRIB, 422
FC, 217
FUZZY, 226
GLS, 237
GME, 230
GRAPH, 66
HET, 244
INDEX, 410
LOGIT, 321
MLE, 256
NL, 262
NONPAR, 295
OLS, 101
PC, 416
PLOT, 69
PORTFOLIO, 376
PRINT, 38
PROBIT, 321
PUT, 381
READ, 36
ROBUST, 330
SMOOTH, 365
SORT, 435
STAT, 58
STOCKGRAPH, 372
TOBIT, 342
WRITE, 39
Belsley, D., 266, 413
Belsley-Kuh-Welsch Tests, 98, 113
Berndt, E., 322
Bernoulli distribution
DISTRIB, 425
Beta distribution
DISTRIB, 425
MLE, 253
Bickel, P., 427
BIGN= option
DISTRIB, 422
BIGX= option
DISTRIB, 422
BINARY option
READ, 35
WRITE, 39
Binomial distribution
DISTRIB, 425
Bivariate normal, 495
BLACK option
CALL, 381
PUT, 381
BLUP option
FC, 217
GLS, 237
POOL, 307
Bofinger, E., 331
BOLLINGER= option
STOCKGRAPH, 373
BOOTLIST option
DIAGNOS, 190
BOOTSAMP= option
DIAGNOS, 191
Bootstrapping, 468
BOOTUNIT= option
DIAGNOS, 192
BOX
ACCUR option, 174
ALL option, 174
ANOVA option, 174
AUTO option, 174
BEG= option, 174
COEF= option, 176
command, 169
COV= option, 174
DN option, 175
DROP option, 175
DUMP option, 175
END= option, 174
FULL option, 175
GAP= option, 175
GF option, 174
LAMBDAX option, 176
LAME option, 176
LAMIX option, 176
LAMXS option, 176
LIST option, 174
MAX option, 174
NMISX option, 175
NOCONSTANT option, 175
PCOR option, 174
PCOV option, 174
PREDICT= option, 174
RESID= option, 174
RESTRICT option, 175
RHO= option, 176
RSTAT option, 174
Temporary Variables, 176
TIDWELL option, 175
UT option, 176
Box, G.E.P., 175
Box-Jenkins method, 137
Box-Pierce test, 138, 145
Box-Pierce-Ljung Test, 194
Breusch, T., 189
BRHO= option
NONPAR, 295
Broyden-Fletcher-Goldfarb-Shannon Method, 266
Bur distribution
DISTRIB, 425
BYVAR option
PRINT, 38, 43
READ, 35, 43
SET, 437
WRITE, 39
C= option
DISTRIB, 422
Calculator, 83
CALL
AMERICAN option, 381
BARRIER= option, 382
BEG= option, 381
BLACK option, 381
command, 369
DIVIDEND= option, 382
DOWN= option, 382
END= option, 381
EQUAL option, 382
IMPVOL option, 382
NUMTIME= option, 382
OPTIONP= option, 382
PREDICTP= option, 382
PREDICTV= option, 382
RISKFREE= option, 382
SIGMA= option, 382
STRIKEPRICE= option, 382
TIME= option, 382
UP= option, 382
Cameron, T., 251, 315
Cauchy distribution
DISTRIB, 426
CC option
SET, 437
CD option
FILE, 31
CDF= option
DISTRIB, 422
CENTRAL option
SMOOTH, 365
CES production function, 271
CHAIN option
INDEX, 410
Chalfant, J., 131
character data, 86
CHARVARS= option
READ, 36
Chebychev inequality, 123
CHECKOUT
command, 443
Chiang, A.C., 389
Chi-squared distribution
DISTRIB, 426
CHOL function
MATRIX, 401
Choleski Solution, 102
CHOLSPEC option
QP, 392
Chow Test, 106, 199
Chow, G., 315
CHOWONE= option
DIAGNOS, 192
CHOWTEST option
DIAGNOS, 190
CLOSE option
FILE, 31
READ, 35
WRITE, 39
CMA= option
FUZZY, 227
Cochrane-Orcutt Method, 462
COEF
command, 261
COEF option
FLS, 334
COEF= option
2SLS, 349
ARIMA, 147, 153
AUTO, 163
BOX, 176
FC, 216, 217
GLS, 237
GME, 230
HET, 244
LOGIT, 321
MLE, 256
NL, 262
NONPAR, 295
OLS, 101
POOL, 308
PROBIT, 321
SYSTEM, 357
TOBIT, 342
COEF1= option
CONFID, 126
COEF2= option
CONFID, 126
Coefficient of variation, 58
COEFMAT= option
SYSTEM, 357
COINT
  BEG= option, 184
  command, 183
  DN option, 184
  DUMP option, 184
  END= option, 184
  LOG option, 184
  MAX option, 184
  NDIFF= option, 184
  NLAG= option, 184
  RESID= option, 184
  SIGLEVEL= option, 185
  TESTSTAT= option, 185
  TYPE= option, 185

Cointegration tests, 183

COLS= option
  READ, 36, 44

COMLEN= option
  SET, 441

command
  2SLS, 348
  ARIMA, 137
  AUTO, 163
  AXISFMT, 67
  BAYES, 131
  BOX, 169
  CALL, 369
  CHECKOUT, 443
  COEF, 261
  COINT, 183
  COMPRESS, 443
  CONFID, 124
  COPY, 399, 405
  DELETE, 444
  DEMO, 445
  DERIV, 88
  DIAGNOS, 189
  DIM, 42, 445
  DISPLAY, 437, 442
  DISTRIB, 421
  DO, 446, 453
  DUMP, 446
  END, 261, 355
  ENDIF, 88
  EQ, 261
  EXEC, 483
  FC, 213
  FILE, 31, 446
  FLS, 333
  FORMAT, 44
  FUZZY, 225
  GEND, 73
  GLS, 235
  GME, 229
  GRAPH, 65
  HELP, 447

HET, 244
  IF, 84
  IF1, 85
  INDEX, 409
  INST, 349
  INTEG, 89
  LAMBDA, 178
  LP, 385
  MATRIX, 399
  MENU, 447
  MLE, 251
  NAMEFMT, 45
  NAMES, 447
  NL, 259
  NONPAR, 287
  OLS, 19, 95, 354
  PAR, 447
  PC, 413
  PLOT, 65
  POOL, 301
  PORTFOLIO, 369
  PRINT, 38
  PROC, 483
  PROCEND, 483
  PUT, 369
  QP, 389
  READ, 18, 34
  RENAME, 448
  RESTRICT, 110, 355
  REWIND, 448
  ROBUST, 327
  SAMPLE, 17, 33
  SET, 437
  SIZE, 448
  SKIPIF, 85
  SMOOTH, 363
  SORT, 435
  STAT, 19, 51
  STOCKGRAPH, 369
  STOP, 449
  SYSTEM, 354
  TEST, 117, 355
  TIME, 450
  TIMEFMT, 67
  TITLE, 451
  TOBIT, 339
  WRITE, 39

comment lines, 443

COMMFILE= option

GRAPH, 66

COMPRESS
  command, 443

Concatenation
  MATRIX, 399

Condition Index, 413
Condition Number, 413
Conditional statements, 84
CONFID
   COEF1= option, 126
   COEF2= option, 126
   command, 124
   COVAR12= option, 126
   DF= option, 124, 125, 126
   FCRIT= option, 125
   GRAPH option, 125
   NOFPLT option, 125
   NOMID option, 125
   NORMAL option, 124
   NOTPLOT option, 125
   POINTS= option, 126
   TCRIT= option, 124
   VAR1= option, 126
   VAR2= option, 126

Confidence Intervals, 124
Constant digits, 58
continuation lines, 261, 444
CONTINUE option
   SET, 437
CONV= option
   AUTO, 164
   GME, 231
   HET, 244
   LOGIT, 321
   MLE, 256
   NL, 265
   POOL, 308
   PROBIT, 321
   QP, 392
   ROBUST, 330
   SYSTEM, 357
   TOBIT, 342
COPY
   command, 399, 405
   FCOL= option, 406
   FROW= option, 405
   TCOL= option, 406
   TROW= option, 406
COR option
   PC, 415
COR= option
   STAT, 58
CORCOEF option
   POOL, 307
Cosine, 80, 335
COV= option
   2SLS, 349
   AUTO, 163
   BOX, 174
   GLS, 237
   GME, 230
   HET, 244
   LOGIT, 321
   MLE, 256
   NL, 262
OLS, 101
POOL, 307
PROBIT, 321
STAT, 58
SYSTEM, 358
TOBIT, 342
COVAR12= option
   CONFID, 126
CP= option
   STAT, 58
CPDEV= option
   STAT, 58
CPUTIME option
   SET, 438
CRITICAL= option
   DISTRIB, 422
Cross-correlations, 146
CSINDEX= option
   POOL, 308
CSNUM= option
   FC, 218
CTEST option
   DIAGNOS, 190
cumulative distribution function, 421
DATA option
   DUMP, 446
DATAFILE= option
   GRAPH, 66
Davidon-Fletcher-Powell Algorithm, 266
Davies method
   DISTRIB, 426
Davies, R.B., 426
Deegan, J. Jr., 339
DEGREES= option
   FUZZY, 226
DELETE
   ALL option, 444
   ALLDATA option, 444
   command, 444
DELETE option
   FILE, 31
   SET, 438
DELTA option
   FLS, 334
DELTA= option
   NONPAR, 295
DEMO
   command, 445
   START option, 445
DENSITY option
   NONPAR, 295
DERIV
   command, 88
DESC option
   SORT, 435
DET function
   MATRIX, 401
INDEX

DEVATION option
  GME, 231
DEVICE= option
  GRAPH, 66
DF= option
  CONFID, 124, 125, 126
  DISTRIB, 423
DF1= option
  DISTRIB, 423
DF2= option
  DISTRIB, 423
DFBETAS option
  OLS, 96
DFFITS Statistic, 114
DFVEC= option
  DISTRIB, 423
Dhrymes, P., 163, 164
DIAG function
  MATRIX, 401
DIAGNOS
  ACF option, 189
  BACKWARD option, 189
  BOOTLIST option, 190
  BOOTSAMP= option, 191
  BOOTUNIT= option, 192
  CHOWONE= option, 192
  CHOWTEST option, 190
  command, 189
  CTEST option, 190
  GQOBS= option, 192
  GRAPH option, 190
  HANSEN option, 190
  HET option, 190
  JACKKNIFE option, 190
  LIST option, 191
  MAX option, 191
  MHET= option, 192
  RECEST option, 191
  RECRESID option, 191
  RECUNIT= option, 192
  RECURE option, 191
  RESEET option, 191
  SIGLEVEL= option, 192
  WHITE option, 191
DIAGR= option
  QP, 392
Dickey-Fuller tests, 181
Diewert, W., 410, 411
DIF files, 48
DIF option
  READ, 35
  WRITE, 39, 48
DIFF= option
  ROBUST, 331
DIM
  command, 42, 445
DISPLAY
  command, 437, 442
DISTRIBUT
  ACCURACY= option, 422
  BEG= option, 422
  Bernoulli distribution, 425
  Beta distribution, 425
  BIGN= option, 422
  BIGX= option, 422
  Binomial distribution, 425
  Burr distribution, 425
  C= option, 422
  Cauchy distribution, 426
  CDF= option, 422
  Chi-squared distribution, 426
  command, 421
  CRITICAL= option, 422
  Davies method, 426
  DF= option, 423
  DF1= option, 423
  DF2= option, 423
  DFVEC= option, 423
  Edgeworth approximation, 427
  EIGENVAL= option, 423
  END= option, 422
  Erlang distribution, 427
  Exponential distribution, 427
  Extreme value distribution, 428
  F distribution, 428
  Gamma distribution, 428
  Geometric distribution, 428
  H= option, 423
  Hypergeometric distribution, 429
  Imhof method, 429
  INVERSE option, 421
  Inverted Gamma distribution, 429
  K= option, 423
  KURTOSIS= option, 423
  LAMBDA= option, 423
  LIMIT= option, 423
  LLF option, 422
  Logistic distribution, 430
  Lognormal distribution, 430
  MEAN= option, 423
  N= option, 423
  Negative binomial distribution, 430
  NEIGEN= option, 423
  NOLIST option, 422
  NONCEN= option, 423
  Normal distribution, 431
  P= option, 424
  Pareto distribution, 431
  Pascal distribution, 431
  PDF= option, 424
  Poisson distribution, 431
  Power function distribution, 431
  Q= option, 424
  S= option, 424
SKWNESS = option, 424
t distribution, 432
Temporary Variables, 424
TYPE = option, 424
V = option, 424
VAR = option, 424
Weibull distribution, 432
X = option, 424
DIVIDEND = option
CALL, 382
PUT, 382
DIVISIA = option
INDEX, 411
DLAG option
AUTO, 163
GLS, 237
OLS, 96
POOL, 307
DN option
ARIMA, 146, 152
AUTO, 163
BOX, 175
COINT, 184
GLS, 237
OLS, 97, 262
POOL, 307
STAT, 57
SYSTEM, 356
DO
command, 446, 453
Temporary Variables, 454
DOECHO option
SET, 438
Doksum, K., 427
DO-Loops, 453
D’Orey, V., 328
DOWN = option
CALL, 382
PUT, 382
DRHO option
NL, 262
DROP option
AUTO, 163
BOX, 175
DSLACK = option
LP, 386
DUAL = option
LP, 386
QP, 392
DUM function
GENR, 74, 75
Dummy variables, 75
DUMP
ASCII option, 446
command, 446
DATA option, 446
KADD option, 446
VNAME option, 446
DUMP option
2SLS, 349
AUTO, 163
BOX, 175
COINT, 184
FUZZY, 226
GLS, 237
HET, 244
LOGIT, 321
LP, 386
MLE, 256
NL, 263
OLS, 97
POOL, 307
PROBIT, 321
QP, 392
SET, 438
SYSTEM, 356
TOBIT, 342
Durbin h statistic, 96, 159
Durbin-Watson test, 25, 97, 271, 460
DWPVALUE option
OLS, 97
DYNAMIC option
FC, 217
ECHO option
SET, 438
Edgeworth approximation
DISTRIB, 427
EIGENVAL = option
DISTRIB, 423
EIGVAL function
MATRIX, 401
EIGVEC function
MATRIX, 401
Elasticity, 318
LININV, 98
LINLOG, 98
LOGINV, 98
LOGLIN, 98
EMA option
STOCKGRAPH, 372
EMAVE = option
SMOOTH, 365
END
command, 117, 261, 355
END = option
2SLS, 349
AUTO, 163
BOX, 174
CALL, 381
COINT, 184
DISTRIB, 422
FC, 217
FUZZY, 226
GLS, 237
INDEX

GME, 230
GRAPH, 66
HET, 244
INDEX, 410
LOGIT, 321
MLE, 256
NL, 262
NONPAR, 295
OLS, 101
PC, 416
PLOT, 69
PORTFOLIO, 376
PRINT, 38
PROBIT, 321
PUT, 381
READ, 36
SMOOTH, 365
SORT, 435
STAT, 58
STOCKGRAPH, 372
TOBIT, 342
WRITE, 39

ENDIF
command, 88
EOF option
READ, 35

EQ
command, 261
EQUAL option
CALL, 382
PUT, 382

EQUALWEIGHT option
PORTFOLIO, 376

Erlang distribution
DISTRIBUT, 427
Error codes, 452
ESTEND= option
FC, 218
EVAL option
NL, 263
EVAL= option
PC, 416
EVEC= option
PC, 416
EXEC
command, 483

EXP function
GENR, 74
MATRIX, 401
EXPEND option
INDEX, 411

Exponential distribution
DISTRIBUT, 427
MLE, 252

Extreme value distribution
DISTRIBUT, 428

F distribution

DISTRIBUT, 428
FACT function
MATRIX, 401
Factorial, 77
Farebrother, R., 102

FBEG= option
ARIMA, 153

FC
AFCSE option, 217
BEG= option, 217
BLUP option, 217

COEF= option, 216, 217
command, 213
CSNUM= option, 218

DYNAMIC option, 217
END= option, 217
ESTEND= option, 218
FCSE= option, 218

FIXED option, 217
GF option, 217

IBLUP option, 217
LIMIT= option, 218
LIST option, 217
MAX option, 217
MEANPRED option, 217

MODEL= option, 218

NCROSS= option, 218
NOCONSTANT option, 218

ORDER= option, 219
PERCENT option, 217

POOLSE= option, 219
PREDICT= option, 217

RESID= option, 217
RHO= option, 219
SRHO= option, 219

UPPER option, 218

FCOL= option
COPY, 406

FCRIT= option
CONFID, 125


FCSE= option
ARIMA, 153
FC, 218
NONPAR, 296

FE= option
OLS, 101

FEND= option
ARIMA, 153

FILE
CD option, 31
CLOSE option, 31
command, 31, 446
DELETE option, 31
INPUT option, 31
KEYBOARD option, 31
LIST option, 32
OUTPUT option, 32
PATH option, 32
PLOTPATH option, 32
PRINT option, 32
PROC option, 32
PROCPTH option, 32
PWD option, 32
SCREEN option, 32
TEMP option, 32
FISHER= option
INDEX, 411
FIVEQUAN option
ROBUST, 330
FIXED option
FC, 217
POOL, 307
FLS
COEF option, 334
command, 333
DELTA option, 334
GRAPH option, 334
MAX option, 334
NOCONSTANT option, 334
PCOEF option, 334
Temporary Variables, 335
Forecasting, 151, 213
FORMAT
command, 44
FORMAT option
PRINT, 38
READ, 36
WRITE, 39
Freedman, D., 468
FROW= option
COPY, 405
F-test statistic, 121
F-test Statistic, 108
FULL option
BOX, 175
POOL, 307
SYSTEM, 356
FULLMAT option
GLS, 237
FUZZY
BEG= option, 226
CMA= option, 227
command, 225
DEGREES= option, 226
DUMP option, 226
END= option, 226
GRAPHDATA option, 226
GRAPHRULE option, 227
MEDIAN option, 227
NOLIST option, 227
NOMATRIX option, 227
NOSTANDARD option, 227
PASSOC option, 227
PBREAK option, 227
PREDICT= option, 227
RMA= option, 227
RULES= option, 226
WEIGHT= option, 227
FX= option
OLS, 101
Gallant, A., 260
Gamma distribution
DISTRIB, 428
MLE, 252
gamma(log) function
GENR, 74
GAP= option
AUTO, 164
BOX, 175
GARCH= option
HET, 245
GASTWIRT option
ROBUST, 330
GEN1 command, 83
Generalized Method of Moments, 279
GENR
ABS function, 74
command, 73
DUM function, 74, 75
EXP function, 74
gamma(log) function, 74
INT function, 74
LAG function, 74, 76
leads, 76
LGAM function, 74
LOG function, 74
log-gamma function, 74
logical expressions, 82
MAX function, 74
MIN function, 74
MOD function, 74
NCDF function, 74, 78
NOR function, 74
SAMP function, 74
SEAS function, 74
SIN function, 74, 80, 335
SQRT function, 74
SUM function, 74, 81
TIME function, 74, 81
UNI function, 74
GENRVAR option
NL, 263
Geometric distribution
DISTRIB, 428
Geweke, J., 131, 133
GF option
2SLS, 349
AUTO, 163
BOX, 174
FC, 217
GLS, 237
MLE, 256
OLS, 20, 97
POOL, 307
SYSTEM, 356

GLS
ANOVA option, 237
BEG= option, 237
BLUP option, 237
COEF= option, 237
command, 235
COV= option, 237
DLAG option, 237
DN option, 237
DUMP option, 237
END= option, 237
FULLMAT option, 237
GF option, 237
HETCOV option, 237
LININV option, 237
LINLOG option, 237
LIST option, 237
LOGINV option, 237
LOGLOG option, 237
LINLOG option, 237
MAX option, 237
NOCONSTANT option, 237
OMUNLSIGSQ option, 237
OMEGA= option, 237
OMINV= option, 237
PCOR option, 237
PCOV option, 237
PMATRIX= option, 237, 238
PREDICT= option, 237, 238
RESID= option, 238
RESTRICT option, 237
RSTAT option, 237
STDERR= option, 237
Temporary Variables, 238
TRATIO= option, 237
UT option, 237
GMATRIX= option
HET, 245

GME
BEG= option, 230
COEF= option, 230
command, 229
CONV= option, 231
COV= option, 230
DEVITION option, 231
END= option, 230
ITER= option, 231
LININV option, 230
LINLOG option, 230
LIST option, 230
LOGEPS= option, 231
LOGINV option, 230
LOGLIN option, 230

LOGLOG option, 230
NOCONSTANT option, 230
PCOV option, 230
PITER= option, 231
PREDICT= option, 230
QPRIOR= option, 231
RESID= option, 230
RSTAT option, 230
START= option, 231
STDERR= option, 230
TRATIO= option, 230
UPRIOR= option, 231
VENTROPY= option, 231
ZENTROPY= option, 231

GMM= option
NL, 265
GMMOUT= option
NL, 266
Godfrey, L., 189
Goldberger, A., 339
Goldfeld-Quandt Test, 190
GQOBS= option
DIAGNOS, 192
Gram Schmidt, 102
Granger causality, 209

GRAPH
APPEND option, 65
AXIS option, 65
AXISFMT option, 65
BEG= option, 66
command, 65
COMMFIL= option, 66
DATAFILE= option, 66
DEVICE= option, 66
END= option, 66
GROUPS= option, 67
HISTO option, 65
KEY option, 66
LINE option, 66
LINEONLY option, 66
NOAXIS option, 65
NOKEY option, 66
OUTPUT= option, 67
PORT= option, 67
RANGE option, 66
TIME option, 66
TIMEFMT option, 66
WIDE option, 66

GRAPH option
CONFID, 125
DIAGNOS, 190
FLS, 334
NONPAR, 295
OLS, 97
ROBUST, 330
SET, 438
INDEX

GRAPHAC option
ARIMA, 139

GRAPHDATA option
ARIMA, 139
FUZZY, 226
PORTFOLIO, 376
STOCKGRAPH, 372

GRAPHFORC option
ARIMA, 152

GRAPHFRONT option
PORTFOLIO, 376

GRAPHLINE option
PORTFOLIO, 376

GRAPHMA option
STOCKGRAPH, 372

GRAPHMACD option
STOCKGRAPH, 372

GRAPHPAC option
ARIMA, 139

GRAPHRES option
ARIMA, 139

GRAPHRULE option
FUZZY, 227

GRAPHVOL option
STOCKGRAPH, 373

Gray, R., 131

Greene, W., 101, 203, 207

Gregory, A., 122

Grid Search Procedure, 158

Griffiths, W., 131, 160, 169, 203, 235, 259, 269, 272, 275, 327, 343, 417, 429, 460, 464

GROUPS= option
GRAPH, 67
PLOT, 69

GS option
AUTO, 163

Gujarati, D., 53

H= option
DISTRIB, 423

Hadamard product/division
MATRIX, 399, 403

Hall, A., 189
Hall, P., 331

HANSEN option
DIAGNOS, 190

Hanushek, E., 315

Harvey, A., 189

Hat Matrix, 113

HATDIAG= option
NONPAR, 296
OLS, 102

Hausman Test, 473

HELP
command, 447

HET
ARCH= option, 244
ARCHM= option, 245

BEG= option, 244

COEF= option, 244
command, 244

CONV= option, 244

COV= option, 244

DUMP option, 244

END= option, 244

GARCH= option, 245

GMATRIX= option, 245

ITER= option, 244

LININV option, 244

LINLOG option, 244

LIST option, 244

LOGINV option, 244

LOGLIN option, 244

LOGLOG option, 244

MACH= option, 245

MAX option, 244

METHOD= option, 244

MODEL= option, 245

NOCONSTANT option, 244

NUMCOV option, 244

NUMERIC option, 244

OPGCOV option, 244

PCOR option, 244

PCOV option, 244

PITER= option, 244

PREDICT= option, 244

PRESAMP option, 244

RESID= option, 244

RSTAT option, 244

START= option, 245

STDERR= option, 244

STDRESID= option, 246

STEPSIZE= option, 244

TRATIO= option, 244

HET option
DIAGNOS, 190

HETCOV option
GLS, 237
OLS, 97
POOL, 308

Heteroskedasticity, 241


HISTO option
GRAPH, 65
PLOT, 69

Hodrick-Prescott filter, 365

HOLD option
PLOT, 69

Householder Transformations, 102
INDEX

HPFILTER option
SMOOTH, 365

HYBRID option
NL, 266

Hypergeometric distribution
DISTRIB, 429

Hypothesis Testing, 117

IAC option
ARIMA, 139

IBLUP option
FC, 217

IDEN function
MATRIX, 401

IDVAR= option
OLS, 102, 108

IF
command, 84

IF1
command, 85

IFACT= option
QP, 392

Imhof method
DISTRIB, 429

IMPVOL option
CALL, 382
PUT, 382

IMR= option
PROBIT, 321

IN= option
MLE, 256
NL, 266
SYSTEM, 358

INCOEF= option
OLS, 102

INCOVAR= option
NONPAR, 296
OLS, 102

INDEX
BASE= option, 411
BEG= option, 410
CHAIN option, 410
command, 409
DIVISIA= option, 411
END= option, 410
EXPEND option, 411
FISHER= option, 411
LASPEYRES= option, 411
NOALTERN option, 411
NOLIST option, 411
PAASCHE= option, 411
QDIVISIA= option, 411
QFISHER= option, 411
QLASPEYRES= option, 411
QPAASCHE= option, 411
INDEX= option
LOGIT, 322
PORTFOLIO, 377

PROBIT, 322
TOBIT, 342

INDW= option
OLS, 102

INFLUENCE option
OLS, 98, 113

INPUT option
FILE, 31

INRATES option
PORTFOLIO, 377

INSIG2= option
OLS, 102

INST
command, 349

INT function
GENR, 74
MATRIX, 401

INTEG
command, 89

INV function
MATRIX, 401

INVERSE option
DISTRIB, 421

Inverted Gamma distribution
DISTRIB, 429

ITER= option
ARIMA, 147
AUTO, 164
GME, 231
HET, 244
LOGIT, 322
LP, 386
MLE, 256
NL, 266
NONPAR, 296
POOL, 308
PROBIT, 322
QP, 392
ROBUST, 331
SYSTEM, 358
TOBIT, 343

JACKKNIFE option
DIAGNOS, 190
Jackknife procedure, 202

Jackson, J., 315

Jarque-Bera test, 97

Jenkins, G., 160

Johnson, N., 425

Johnston, J., 203, 2
407

Jolliffe, I., 413

J- test, 474

Judge, G., 131, 160, 169, 203, 235, 259, 269, 272, 275,
327, 343, 417, 429, 460, 464

K= option
DISTRIB, 423

KADD option
DUMP, 446
Kaiser, H., 416
Kendall, M., 53
KEY option
   GRAPH, 66
KEYBOARD option
   FILE, 31
Koenker, R., 328
Koerts, J., 429
Kotz, S., 425
Kronecker product
   MATRIX, 399
Kuh, E., 413
Kurtosis, 97
KURTOSIS= option
   DISTRIBUT, 423
LAE option
   ROBUST, 330
Lagfontaine, F., 122
LAG function
   GENR, 74, 76
LAGRANGE= option
   QP, 392
LAMBDA command, 178
LAMBDA= option
   BOX, 176
   DISTRIBUT, 423
   SMOOTH, 365
LAME= option
   BOX, 176
LAMI= option
   BOX, 176
LAMS= option
   BOX, 176
LASPEYRES= option
   INDEX, 411
LASTCOM option
   SET, 438
LCUC option
   SET, 438
leads
   GENR, 76
Lesage, J., 51
LGAM function
   GENR, 74
LIMIT= option
   DISTRIBUT, 423
   FC, 218
   TOBIT, 343
LINE option
   GRAPH, 66
Linear programming, 385
LINEONLY option
   GRAPH, 66
LININV option
   GLS, 237
   GME, 230
   HET, 244
   MLE, 256
   OLS, 98
   ROBUST, 330
LINLOG option
   AUTO, 163
   GLS, 237
   GME, 230
   HET, 244
   MLE, 256
   OLS, 98
   POOL, 307
   ROBUST, 330
LIST option
   2SLS, 349
   AUTO, 163
   BOX, 174
   DIAGNOS, 191
   FC, 217
   FILE, 32
   GLS, 237
   GME, 230
   HET, 244
   LOGIT, 321
   MLE, 256
   NL, 262
   NONPAR, 295
   OLS, 20, 98
   PC, 415
   POOL, 307
   PORTFOLIO, 377
   PROBIT, 321
   READ, 36
   ROBUST, 330
   SORT, 435
   STOCKGRAPH, 373
   SYSTEM, 356
   TOBIT, 342
Ljung-Box-Pierce test, 138, 145
LLF option
   DISTRIBUT, 422
LM option
   MLE, 257
LOG function
   GENR, 74
   MATRIX, 401
LOG option
   ARIMA, 139, 152
   Coint, 184
   LOGIT, 321
   PROBIT, 321
LOGDEN option
   NL, 263
LOGEPS= option
INDEX

GME, 231
log-gamma function
GENR, 74
logical expressions
GENR, 82
LOGINV option
GLS, 237
GME, 230
HET, 244
MLE, 256
OLS, 98
ROBUST, 330
Logistic distribution
DISTRIB, 430
LOGIT
BEG= option, 321
COEF= option, 321
CONV= option, 321
COV= option, 321
DUMP option, 321
END= option, 321
INDEX= option, 322
ITER= option, 322
LIST option, 321
LOG option, 321
MAX option, 321
NOCONSTANT option, 321
NONORM option, 321
PCOR option, 321
PCOV option, 321
PITER= option, 322
PREDICT= option, 322
RSTAT option, 321
STDERR= option, 321
Temporary Variables, 322
TRATIO= option, 321
WEIGHT= option, 321
LOGLIN option
AUTO, 163
GLS, 237
GME, 230
HET, 244
MLE, 256
OLS, 98
POOL, 307
ROBUST, 330
LOGLOG option
AUTO, 163
GLS, 237
GME, 230
HET, 244
MLE, 256
OLS, 99
POOL, 307
ROBUST, 330
Lognormal distribution
DISTRIB, 430
LOWER= option
QP, 393
LOWSCAL= option
QP, 393
LP
command, 385
DUAL= option, 386
DUMP option, 386
ITER= option, 386
MIN option, 386
PRIMAL= option, 386
PSLACK= option, 386
Temporary Variables, 386
LUSH residuals, 100
MACH= option
HET, 245
MacKinnon, J., 164, 167
Maddala, G., 203, 259, 315, 339
Magee, L., 169
MALONG= option
STOCKGRAPH, 373
MAMACD= option
STOCKGRAPH, 373
MASHORT= option
STOCKGRAPH, 373
MATRIX
CHOL function, 401
command, 399
Concatenation, 399
DET function, 401
DIAG function, 401
EIGVAL function, 401
EIGVEC function, 401
EXP function, 401
FACT function, 401
Hadamard product/division, 399, 403
IDEN function, 401
INT function, 401
INV function, 401
Kronecker product, 399
LAG function, 401
LOG function, 401
NCDF function, 401
NOR function, 401
RANK function, 402
SAMP function, 402
SEAS function, 402
SIN function, 402
SORT function, 402
Stacking, 399
SVDF function, 402
SYM function, 402
TIME function, 402
TRACE function, 402
Transpose, 399
TRI function, 402
UNI function, 402
VEC function, 402

MATRIX option
STAT, 57, 62
MAVE= option
SMOOTH, 366

MAX function
GENR, 74
MAX option
2SLS, 349
AUTO, 163
BOX, 174
COINT, 184
DIAGNOS, 191
FC, 217
FLS, 334
GLS, 237
HET, 244
LOGIT, 321
MLE, 256
OLS, 20, 99
PC, 415
POOL, 307
PROBIT, 321
ROBUST, 330
SET, 438
STAT, 57
SYSTEM, 356
TOBIT, 342

MAXCOL= option
SET, 441

MAXFACT= option
PC, 416

MAXFUNC option
NL, 263

MAXIM= option
STAT, 58

Maximum likelihood estimation, 243
McAleeer, M., 189
McKenzie, C., 189

MEAN= option
DISTRIB, 423
STAT, 58

MEANPRED option
FC, 217
Median, 57
MEDIAN option
FUZZY, 227

MEDIANS= option
STAT, 58

MENU
command, 447

MEQ= option
QP, 393

METHOD= option
HET, 244
MLE, 257
NL, 266
NONPAR, 296
OLS, 102
QP, 393

MHET= option
DIAGNOS, 192

MIN function
GENR, 74

MIN option
LP, 386
QP, 392

MINEIG= option
PC, 416

MINFUNC option
NL, 264

MISS option
AUTO, 164
Missing data, 35, 91

MISSVALU= option
SET, 441

ML option
AUTO, 164

MLE
ANOVA option, 256
BEG= option, 256
Beta distribution, 253

COEF= option, 256
command, 251

CONV= option, 256

COV= option, 256

DUMP option, 256

END= option, 256

Exponential distribution, 252

Gamma distribution, 252

GF option, 256

IN= option, 256

ITER= option, 256

LININV option, 256

LINLOG option, 256

LIST option, 256

LM option, 257

LOGINV option, 256

LOGLIN option, 256

LOGLOG option, 256

MAX option, 256

METHOD= option, 257

NOCONSTANT option, 256

NONORM option, 256

NUMERIC option, 256

OUT= option, 256

PCOR option, 256

PCOV option, 256
INDEX

PITER= option, 256
Poisson regression, 255
PREDICT= option, 256
RESID= option, 256
RSTAT option, 256
STDERR= option, 256
Temporary Variables, 257
TRATIO= option, 256
TYPE= option, 257
Weibull distribution, 252
WEIGHT= option, 256

MOD function
GENR, 74
Mode, 57
MODEL= option
FC, 218
HET, 245
MODES= option
STAT, 59
Monte Carlo, 466
MULSIGSQ option
POOL, 308
Multicollinearity, 413
Multinomial Logit, 479
MULTIT option
ROBUST, 331
Multivariate normal, 495
Mundlak, Y., 417
N= option
DISTRIB, 423
NAMEFMT command, 45
NAMES command, 447
NAMES option
READ, 36
NAR= option
ARIMA, 147
NC= option
PC, 416
NCDF function
GENR, 74, 78
MATRIX, 401
NCOEF= option
NL, 268
NCROSS= option
FC, 218
POOL, 308
NDIFF= option
ARIMA, 140
COINT, 184
Negative binomial distribution
DISTRIB, 430
NEGATIVE option
TOBIT, 342
NEGDEFOption
QP, 392

NEIGEN= option
DISTRIB, 423
Newbold P., 412
Newey-West method, 182
Nichols, D., 213
NL
ACROSS option, 262
AUTOCOV= option, 265
AUTO option, 262
BEG= option, 262
COEF= option, 262
command, 259
CONV= option, 265
COV= option, 262
DRHO option, 262
DUMP option, 263
END= option, 262
EVAL option, 263
GENRVAR option, 263
GMM= option, 265
GMMOUT= option, 266
HYBRID option, 266
IN= option, 266
ITER= option, 266
LIST option, 262
LOGDEN option, 263
MAXFUNC option, 263
METHOD= option, 266
MINFUNC option, 264
NCOEF= option, 268
NOCONEXOG option, 264
NOPSIGMA option, 264
NUMCOV option, 264
NUMERIC option, 264
OPGCOV option, 264
ORDER= option, 268
OUT= option, 268
PCOV option, 265
PITER= option, 268
PREDICT= option, 262
RESID= option, 262
RSTAT option, 262
SACONV= option, 266
SAITER option, 266
SALOWER = option, 267
SALOWFAC = option, 267
SAME option, 265
SANEPS = option, 267
SANS = option, 267
SANT = option, 267
SATRF = option, 267
SAUPFAC = option, 267
SAUPPER = option, 267
SIGMA= option, 268
SOLVE option, 265
START= option, 268
STEPSIZE= option, 268
INDEX

ZMATRIX= option, 269
NLAG= option
   ARIMA, 140
   COINT, 184
NLAGP= option
   ARIMA, 140
NMA= option
   ARIMA, 147
   SMOOTH, 366
NMISS= option
   AUTO, 164
   BOX, 175
NOALTERN option
   INDEX, 411
NOANTITHET option
   BAYES, 132
NOAXIS option
   GRAPH, 65
NOBLANK option
   PLOT, 69
NOCC option
   SET, 437
Nocedal, J., 389
NOCENTRAL option
   SMOOTH, 365
NOCONEXOG option
   2SLS, 349
   NL, 264
   SYSTEM, 356
NOCONSTANT option
   2SLS, 349
   ARIMA, 146
   AUTO, 163
   BOX, 175
   FC, 218
   FLS, 334
   GLS, 237
   GME, 230
   HET, 244
   LOGIT, 321
   MLE, 256
   OLS, 20, 99
   POOL, 307
   PROBIT, 321
   ROBUST, 330
   SYSTEM, 356
NODELETE option
   SET, 438
NOF PLOT option
   CONFID, 125
NOGRAPH option
   SET, 438
NOL CUC option
   SET, 438
NOLIST option
   DISTRIB, 422
FUZZY, 227
INDEX, 411
NOMID option
   CONFID, 125
NOMULSIGSQ option
   GLS, 237
   OLS, 99
NONAMES option
   PRINT, 38
   WRITE, 39
NONCEN= option
   DISTRIB, 423
Nonlinear estimation, 243
Nonlinear Three Stage Least Squares, 259
NONORM option
   LOGIT, 321
   MLE, 256
   OLS, 99
   PROBIT, 321
   TOBIT, 342
NONPAR
   BEG= option, 295
   BRHO= option, 295
   COEF= option, 295
   command, 287
   DELTA= option, 295
   DENSITY option, 295
   END= option, 295
   FCSE= option, 296
   GRAPH option, 295
   HATDIAG= option, 296
   INCOVAR= option, 296
   ITER= option, 296
   LIST option, 295
   METHOD= option, 296
   PCOEF option, 295
   PREDICT= option, 296
   RESID= option, 296
   RWEIGHTS= option, 296
   SIGMA= option, 296
   SMATRIX= option, 296
   SMOOTH= option, 296
   Temporary Variables, 297
NOOUTPUT option
   SET, 439
NOPITER option
   AUTO, 164
NOPMATRIX option
   FUZZY, 227
NOPRETTY option
   PLOT, 69
NOPSIGMA option
   NL, 264
NOR function
   GENR, 74
   MATRIX, 401
NOREWIND option
INDEX

READ, 36
WRITE, 39
Normal distribution, 78, 89
DISTRIB, 431
NORMAL option
BAYES, 132
CONFID, 124
NOSAME option
PLOT, 69
NOSAMPLE option
SET, 439
NOSCREEN option
SET, 439
NOSKIP option
SET, 439
NOSTANDARD option
FUZZY, 227
NOTPLOT option
CONFID, 125
NOWARN option
SET, 332
NOWIDE option
SET, 441
NPOP= option
OLS, 103
STAT, 59
NSAMP= option
BAYES, 132
DF, 132
NSAR= option
ARIMA, 147
NSDIFF= option
ARIMA, 140
NSMA= option
ARIMA, 148
NSSPAN= option
ARIMA, 140, 148
SMOOTH, 366
NTIME= option
POOL, 309
NUMARMA= option
AUTO, 165
NUMCOV option
HET, 244
NL, 264
NUMERIC option
HET, 244
MLE, 256
NL, 264
Numerical derivatives, 144
NUMTIME= option
CALL, 382
PUT, 382
OLS
ANOVA option, 20, 96
AUTOCOV= option, 101
AUXRSQR option, 96
BEG= option, 101
COEF= option, 101
command, 19, 95, 354
COV= option, 101
DFBETAS option, 96
DLAG option, 96
DN option, 97, 262
DUMP option, 97
DWPVALUE option, 97
END= option, 101
FE= option, 101
FX= option, 101
GF option, 20, 97
GRAPH option, 97
HATDIAG= option, 102
HETCOV option, 97
IDVAR= option, 102, 108
INCOEF= option, 102
INCOVAR= option, 102
INDW= option, 102
INFLUENCE option, 98, 113
INSIG2= option, 102
LININV option, 98
LINLOG option, 98
LIST option, 20, 98
LOGINV option, 98
LOGLIN option, 98
LOGLOG option, 99
MAX option, 20, 99
METHOD= option, 102
NOCONSTANT option, 20, 99
NOMULSIGSQ option, 99
NONORM option, 99
NPOP= option, 103
ORDER= option, 103
PCINFO= option, 103
PCOMP= option, 103
PCOR option, 20, 99
PCOV option, 20, 100
PE= option, 103
PIL option, 100
PLUSH option, 100
PREDICT= option, 103
PX= option, 103
REPLICATE option, 100
RESID= option, 103
RESTRICT command, 110
RESTRICT option, 100, 110
RIDGE= option, 103
RSTAT option, 20, 100
STDERR= option, 104
Temporary Variables, 104
TRATIO= option, 104
UT option, 101
WEIGHT= option, 104
WIDE option, 101
INDEX

OLS option
  POOL, 308
OMEGA= option
  GLS, 237
OMINV= option
  GLS, 237
OPGCOV option
  HET, 244
  NL, 264
OPTIONP= option
  CALL, 382
  PUT, 382
OPTIONS option
  SET, 439
ORDER= option
  AUTO, 165
  FC, 219
  NL, 268
  OLS, 103
OUT= option
  MLE, 256
  NL, 268
  SYSTEM, 358
OUTPUT option
  FILE, 32
  SET, 439
OUTPUT= option
  GRAPH, 67
OUTUNIT= option
  BAYES, 133
  SET, 441
P= option
  DISTRIB, 424
  OLS, 103
PC
  BEG= option, 416
  command, 413
  COR option, 415
  END= option, 416
  EVAL= option, 416
  EVEC= option, 416
  LIST option, 415
  MAX option, 415
  MAXFACT= option, 416
  MINEIG= option, 416
  NC= option, 416
  PINFO= option, 417
  PCOLLIN option, 415
  PCOMP= option, 417
  PEVEC option, 415
  PFM option, 415
  PRM option, 416
  RAW option, 416
  SCALE option, 416
PCINFO= option
  OLS, 103
  PC, 417
PCOEV option
  FLS, 334
  NONPAR, 295
PCOLLIN option
  PC, 415
  PCOMP= option
  OLS, 103
  PC, 417
PCOR option
  2SLS, 349
  AUTO, 163
  BOX, 174
  GLS, 237
  HET, 244
  LOGIT, 321
  MLE, 256
  OLS, 20, 99
  POOL, 307
  PROBIT, 321
  ROBUST, 330
  STAT, 57
  SYSTEM, 357
  TOBIT, 342
PCOV option
  2SLS, 349
  AUTO, 163
  BOX, 174
  GLS, 237
  GME, 230
  HET, 244
  LOGIT, 321
  MLE, 256
  NL, 265
  OLS, 20, 100
PAR
  command, 447
Pareto distribution
  DISTRIBUT, 431
Partial autocorrelation function, 138, 142
PARZEN GMM method, 281
Pascal distribution
  DISTRIBUT, 431
Pascal's triangle, 207
PASSOC option
  FUZZY, 227
PATH option
  FILE, 32
PAUSE option
  SET, 439
PBREAK option
  FUZZY, 227
INDEX

POOL, 307, 308
PROBIT, 321
ROBUST, 330
STAT, 57
SYSTEM, 357
TOBIT, 342
PCP option
STAT, 57
PCPDEV option
STAT, 57
PDF= option
DISTRIB, 424
PDUAL option
QP, 392
PE= option
OLS, 103
PERCENT option
FC, 217
Peters, S., 468
PEVEC option
PC, 415
PFM option
PC, 415
PFREQ option
STAT, 57
PFRONTIER option
PORTFOLIO, 377
Phillips-Perron tests, 182
PIL option
OLS, 100
Pindyck, R., 133, 203, 209, 315
PINVEV option
SYSTEM, 357
PITER option
ARIMA, 147
PITER= option
GME, 231
HET, 244
LOGIT, 322
MLE, 256
NL, 268
PROBIT, 322
SYSTEM, 358
TOBIT, 343
PLOT
ALTERNATE option, 69
BEG= option, 69
command, 65
END= option, 69
GROUPS= option, 69
HISTO option, 69
HOLD option, 69
NOBLANK option, 69
NOPRETTY option, 69
NOSAME option, 69
RANGE option, 69
SAME option, 69
SYMBOL= option, 70
TIME option, 69
WIDE option, 70
XMAX= option, 70
XMIN= option, 70
YMAX= option, 70
YMIN= option, 70
PLOTAC option
ARIMA, 139
PLOTDATA option
ARIMA, 139
PLOTFORC option
ARIMA, 153
PLOTPAC option
ARIMA, 139
PLOTPATH option
FILE, 32
PLOTRES option
ARIMA, 147
PLUS option
OLS, 100
PMATRIX= option
GLS, 237, 238
PMEDIAN option
STAT, 57
POINTS= option
CONFID, 126
Poirier, D., 163
Poisson distribution
DISTRIB, 431
Poisson regression
MLE, 255
POOL
ANOVA option, 307
AR1 option, 307
BLUP option, 307
COEF= option, 308
command, 301
CONV= option, 308
CORCOEF option, 307
COV= option, 307
CSINDEX= option, 308
DLAG option, 307
DN option, 307
DUMP option, 307
FIXED option, 307
FULL option, 307
GF option, 307
HETCOV option, 308
ITER= option, 308
LININV option, 307
LINLOG option, 307
LIST option, 307
LOGINV option, 307
LOGLIN option, 307
LOGLOG option, 307
INDEX

MAX option, 307
MULTSIGSQ option, 308
NCROSS= option, 308
NOCONSTANT option, 307
NTIME= option, 309
OLS option, 308
PCOR option, 307
PCOV option, 307, 308
PREDICT= option, 307
RESID= option, 307
RESTRICT option, 307
RHO= option, 309
RSTAT option, 307
SAME option, 308
STDERR= option, 307
Temporary Variables, 309
TRATIO= option, 307
UT option, 307
POOLSE= option
FC, 219
PORT= option
GRAPH, 67
PORTFOLIO
BEG= option, 376
command, 369
END= option, 376
EQUALWEIGHT option, 376
GRAPHDATA option, 376
GRAPHFRONT option, 376
GRAPHLINE option, 376
INDEX= option, 377
INRATES option, 377
LIST option, 377
PFRONTIER option, 377
RETURNS= option, 377
RISKFREE= option, 377
Risks= option, 377
SHARES option, 377
WEIGHTS option, 377
WIDE option, 376
Powell, M.J.D., 389
Power function distribution
DISTRIB, 431
PRANKCOR option
STAT, 58
PREDICT= option
2SLS, 349
ARIMA, 148, 153
AUTO, 163
BOX, 174
FC, 217
FUZZY, 227
GLS, 237
GME, 230
HET, 244
LOGIT, 322
MLE, 256
NL, 262
NONPAR, 296
OLS, 103
POOL, 307
PROBIT, 322
SYSTEM, 359
TOBIT, 343
PREDICTP= option
CALL, 382
PUT, 382
PREDICTV= option
CALL, 382
PUT, 382
PRESAMP option
HET, 244
PRIMAL= option
LP, 386
QP, 393
PRINT
BEG= option, 38
BYVAR option, 38, 43
command, 38
END= option, 38
FORMAT option, 38
NONAMES option, 38
WIDE option, 38
PRINT option
FILE, 32
PRM option
PC, 416
probability density function, 421
PROBIT
BEG= option, 321
COEF= option, 321
CONV= option, 321
COV= option, 321
DUMP option, 321
END= option, 321
IMR= option, 321
INDEX= option, 322
ITER= option, 322
LIST option, 321
LOG option, 321
MAX option, 321
NONCONSTANT option, 321
NONORM option, 321
PCOR option, 321
PCOV option, 321
PITER= option, 322
PREDICT= option, 322
RSTAT option, 321
STDERR= option, 321
Temporary Variables, 322
TRATIO= option, 321
WEIGHT= option, 321
PROC
command, 483
INDEX

PROC option
FILE, 32
PROCEND
command, 483
PROCPATH option
FILE, 32
PSI= option
ARIMA, 153
PSIGMA option
BAYES, 132
SYSTEM, 357
PSLACK= option
LP, 386
Purcha, I., 327
PUT
AMERICAN option, 381
BEG= option, 381
BLACK option, 381
command, 369
DIVIDEND= option, 382
DOWN= option, 382
END= option, 381
EQUAL option, 382
IMPVOL option, 382
NUMTIME= option, 382
OPTIONP= option, 382
PREDICTP= option, 382
PREDICTV= option, 382
RISKFREE= option, 382
SIGMA= option, 382
STRIKEPRICE= option, 382
TIME= option, 382
UP= option, 382
PWD option
FILE, 32
PX= option
OLS, 103
Q= option
DISTRIB, 424
QDIVISIA= option
INDEX, 411
QFISHER= option
INDEX, 411
QLASPEYRES= option
INDEX, 411
QP
CHOLSPEC option, 392
command, 389
CONV= option, 392
DIAGR = option, 392
DUAL= option, 392
DUMP option, 392
IFACT= option, 392
ITER= option, 392
LAGRANGE= option, 392
LOWER= option, 393
LOWSCAL= option, 393
MEQ= option, 393
METHOD= option, 393
MIN option, 392
NEGDEFOption, 392
PDUALoption, 392
PRIMAL= option, 393
Temporary Variables, 394
UNCONSTR option, 392
UPPER= option, 393
UPSCAL= option, 393
ZERO TOL = option, 393
QPAASCHE= option
INDEX, 411
QPRIOR= option
GME, 231
QS GMM method, 281
Quadratic programming, 389
Quantity Indexes, 412
Quasi-Newton, 259
Random numbers, 74, 80, 439, 495
RANFIX option
SET, 80, 439
RANGE option
GRAPH, 66
PLOT, 69
RANK function
MATRIX, 402
RANKCOR= option
STAT, 59
RANSEED option
SET, 442
Rao, C.R., 403
RAW option
PC, 416
READ
BEG= option, 36
BINARY option, 35
BYVAR option, 35, 43
CHARVARS= option, 36
CLOSE option, 35
COLS= option, 36, 44
command, 18, 34
DIF option, 35
END= option, 36
EOF option, 35
FORMAT option, 36
LIST option, 36
NAMES option, 36
NOREWIND option, 36
RE WIND option, 36
ROWS= option, 36, 44
SKIPLINES= option, 37
Reading in data as a matrix, 44
RECEST option
DIAGNOS, 191
RECRESID option
DIAGNOS, 191
INDEX

RECUNIT=  option
  DIAGNOS, 192
RECUR  option
  DIAGNOS, 191
RENAME
  command, 448
REPLICATE  option
  OLS, 100
  STAT, 58
RESET  option
  DIAGNOS, 191
RESID=  option
  2SLS, 349
  ARIMA, 148, 153
  AUTO, 163
  BOX, 174
  COINT, 184
  FC, 217
  GLS, 238
  GME, 230
  HET, 244
  MLE, 256
  NL, 262
  NONPAR, 296
  OLS, 103
  POOL, 307
  SYSTEM, 359
RESTRICT
  command, 110, 355
RESTRICT  option
  2SLS, 349
  ARIMA, 147
  AUTO, 163
  BOX, 175
  GLS, 237
  OLS, 100, 110
  POOL, 307
  SYSTEM, 357
RETURNS=  option
  PORTFOLIO, 377
REWIND
  command, 448
REWIND  option
  READ, 36
  WRITE, 39
RHO=  option
  AUTO, 165
  BOX, 176
  FC, 219
  POOL, 309
Richardson, S., 164
Ridge Regression, 103, 458
RIDGE=  option
  OLS, 103
RISKFREE=  option
  CALL, 382
  PORTFOLIO, 377
  PUT, 382
RISKS=  option
  PORTFOLIO, 377
RMA=  option
  FUZZY, 227
ROBUST
  BEG=  option, 330
  COEF=  option, 330
  command, 327
  CONV=  option, 330
  COV=  option, 330
  DIFF=  option, 331
  END=  option, 330
  FIVEQUAN  option, 330
  GASTWIRT  option, 330
  GRAPH  option, 330
  ITER=  option, 331
  LAE  option, 330
  LININV  option, 330
  LINLOG  option, 330
  LIST  option, 330
  LOGINV  option, 330
  LOGLIN  option, 330
  LOGLOG  option, 330
  MAX  option, 330
  MULTIT  option, 331
  NOCONSTANT  option, 330
  PCOR  option, 330
  PCOV  option, 330
  PREDICT=  option, 330
  RESID=  option, 330
  RSTAT  option, 330
  STDERR=  option, 330
  Theta=  option, 331
  THETAB=  option, 332
  THETAE=  option, 332
  THETAI=  option, 332
  TRATIO=  option, 330
  TRIM=  option, 332
  TUKEY  option, 330
  UNCOR  option, 330
Robust standard errors, 249
ROWS=  option
  READ, 36, 44
RSTAT  option
  2SLS, 349
  AUTO, 163
  BOX, 174
  GLS, 237
  GME, 230
  HET, 244
  LOGIT, 321
  MLE, 256
  NL, 262
  OLS, 20, 100
  PROBIT, 321
  ROBUST, 330
COINT, 185
DIAGNOS, 192
SIGMA= option
ARIMA, 153
CALL, 382
NL, 268
NONPAR, 296
PUT, 382
SYSTEM, 359
Simon,S., 51
SIN function
GENR, 74, 80, 335
MATRIX, 402
Sine, 80, 335
SIZE
command, 448
Skewness, 97
SKEWNESS= option
DISTRIBUT, 424
SKIP option
SET, 439
SKIPS temporary variable, 86
SKIP$ option
SET, 439
Skipping observations, 85
SMATRIX= option
NONPAR, 296
SMOOTH
ADDITION option, 365
ARITH option, 365
BEG= option, 365
CENTRAL option, 365
command, 363
EMAVE= option, 365
END= option, 365
HPFILTER option, 365
LAMBDA= option, 365
MAVE= option, 366
NMA= option, 366
NOCENTRAL option, 365
NSPAN= option, 366
SAMAVE= option, 366
SFAC= option, 366
Temporary Variables, 366
WEIGHT= option, 366
SMOOTH= option
NONPAR, 296
SOLVE option
NL, 265
SOMA option
STOCKGRAPH, 373
SORT
BEG= option, 435
command, 435
DESC option, 435
END= option, 435
LIST option, 435
Spearman rank correlations, 53
SQRT function
GENR, 74
MATRIX, 402
SRHO= option
AUTO, 165
FC, 219
Stacking
MATRIX, 399
START option
ARIMA, 147
DEMO, 445
START= option
ARIMA, 148
GME, 231
HET, 245
NL, 268
STAT
ALL option, 57
ANOVA option, 57
BARTLETT option, 57
BEG= option, 58
command, 19, 51
COR= option, 58
COV= option, 58
CP= option, 58
CPDEV= option, 58
DN option, 57
END= option, 58
MATRIX option, 57, 62
MAX option, 57
MAXIM= option, 58
MEAN= option, 58
MEDIAN= option, 58
MINIM= option, 58
MODE= option, 59
NPOP= option, 59
PCOR option, 57
PCOV option, 57
PCP option, 57
PCPDEV option, 57
PFREQ option, 57
PMEDIAN option, 57
PRANKCOR option, 58
RANKCOR= option, 59
REPLICATE option, 58
SAMEOBS option, 58
SAMPSIZE option, 58
STDEV= option, 59
STEMPLOT= option, 59
SUMS= option, 59
VAR= option, 59
WEIGHT= option, 59
INDEX

WIDE option, 58
Stationarity, 138
STATUS option
   SET, 440
STDERR= option
   2SLS, 349
   AUTO, 163
   GLS, 237
   GME, 230
   HET, 244
   LOGIT, 321
   MLE, 256
   OLS, 104
   POOL, 307
   PROBIT, 321
   SYSTEM, 356
   TOBIT, 342
STDEV= option
   STAT, 59
STDRESID= option
   HET, 246
STEMPLOT= option
   STAT, 59
STEPSIZE= option
   ARIMA, 148
   HET, 244
   NL, 268
Stepwise Regression, 116
STOCKGRAPH
   AXISFMT option, 372
   BEG= option, 372
   BOLLINGER= option, 373
   command, 369
   EMA option, 372
   END= option, 372
   GRAPHDATA option, 372
   GRAPHMA option, 372
   GRAPHMACD option, 372
   GRAPHVO option, 373
   LIST option, 373
   MACD= option, 373
   MALONG= option, 373
   MASHORT= option, 373
   SOMA option, 373
   WIDE option, 372
STOP
   command, 449
STRIKEPRICE= option
   CALL, 382
   PUT, 382
Studentized Residual, 114
SUM function
   GENR, 74, 81
SUMS= option
   STAT, 59
SVD function
   MATRIX, 402
SYM function
   MATRIX, 402
SYMBOL= option
   PLOT, 70
SYSTEM
   COEF= option, 357
   COEFMAT= option, 357
   command, 354
   CONV= option, 357
   COV= option, 358
   DN option, 356
   DUMP option, 356
   FULL option, 356
   GF option, 356
   IN= option, 358
   ITER= option, 358
   LIST option, 356
   MAX option, 356
   NOCONEXOG option, 356
   NOCONSTANT option, 356
   OUT= option, 358
   PCOR option, 357
   PCOV option, 357
   PINVEV option, 357
   PITER= option, 358
   PREDICT= option, 359
   PSIGMA option, 357
   RESID= option, 359
   RESTRICT option, 357
   RSTAT option, 356
   SIGMA= option, 359
   STDERR= option, 356
   Temporary Variables, 359
   TRATIO= option, 356
t distribution
   DISTRIB, 432
TALK option
   SET, 440
Tangent, 80
TCOL= option
   COPY, 406
TCRIT= option
   CONFID, 124
TEMP option
   FILE, 32
Temporary Variables
   2SLS, 349
   AUTO, 166
   description, 449
   DISTRIB, 424
   DO, 454
   FLS, 335
   GLS, 238
   LOGIT, 322
   LP, 386
   MLE, 257
   NONPAR, 297
OLS, 104
POOL, 309
PROBIT, 322
QP, 394
SMOOTH, 366
SYSTEM, 359
TEST, 119
TOBIT, 343
TEST
command, 117, 355
Temporary Variables, 119
TESTSTAT= option
ARIMA, 140, 148
COINT, 185
Theil, H., 75, 359, 436
THETA= option
ROBUST, 331
THETAB= option
ROBUST, 332
THETAE= option
ROBUST, 332
THETAI= option
ROBUST, 332
TIDWELL option
BOX, 175
Tidwell, P., 175
TIME
command, 450
TIME function
GENR, 74, 81
MATRIX, 402
TIME option
GRAPH, 66
PLOT, 69
TIME= option
CALL, 382
PUT, 382
TIMEFMT
command, 67
TIMEFMT option
GRAPH, 66
TIMER option
SET, 440
TITLE
command, 451
Tobin, J., 339
TOBIT
BEG= option, 342
COEF= option, 342
command, 339
CONV= option, 342
COV= option, 342
DUMP option, 342
END= option, 342
INDEX= option, 342
ITER= option, 343
LIMIT= option, 343
LIST option, 342
MAX option, 342
NEGATIVE option, 342
NOCONSTANT option, 342
NONORM option, 342
PCOR option, 342
PCOV option, 342
PITER= option, 343
PREDICT= option, 343
STDERR= option, 342
Temporary Variables, 343
TRATIO= option, 342
UPPER option, 342
WEIGHT= option, 342
TRACE function
MATRIX, 402
TRACE option
SET, 440
Transpose
MATRIX, 399
TRATIO= option
2SLS, 349
AUTO, 163
GLS, 237
GME, 230
HET, 244
LOGIT, 321
MLE, 256
OLS, 104
POOL, 307
PROBIT, 321
SYSTEM, 356
TOBIT, 342
TRI function
MATRIX, 402
TRIM= option
ROBUST, 332
TROW= option
COPY, 406
TRUNC GMM method, 281
TUKEY GMM method, 281
TUKEY option
ROBUST, 330
TYPE= option
COINT, 185
DISTRIB, 424
MLE, 257
UNCONSTRICT option
QP, 392
UNCOR option
ROBUST, 330
UNI function
GENR, 74
MATRIX, 402
Unit root tests, 181
UP= option
CALL, 382
INDEX

PUT, 382
UPPER option
   FC, 218
   TOBIT, 342
UPPER= option
   QP, 393
UPRIOR= option
   GME, 231
UPSCAL= option
   QP, 393
UT option
   BOX, 176
   GLS, 237
   OLS, 101
   POOL, 307
V= option
   DISTRIB, 424
VAR= option
   DISTRIB, 424
   STAT, 59
VAR1= option
   CONFID, 126
VAR2= option
   CONFID, 126
Variable limit, 448
Variable Metric Method, 259
Variance Proportions, 413
Veall, M., 122
VEC function
   MATRIX, 402
VENTROPY= option
   GME, 231
VNAME option
   DUMP, 446
WARN option
   SET, 440
WARNMISS option
   SET, 440
WARNSKIP option
   SET, 441
Watson, D., 104
Weibull distribution
   DISTRIB, 432
   MLE, 252
WEIGHT= option
   FUZZY, 227
   LOGIT, 321
   MLE, 256
   OLS, 104
   PROBIT, 321
   SMOOTH, 366
   STAT, 59
   TOBIT, 342
WEIGHTS option
   PORTFOLIO, 377

Welsch, R., 413
WHITE option
   DIAGNOS, 191
White, H., 97
White, K., 104, 122, 131, 164, 169, 174, 251, 260, 315, 339
White's Heteroskedastic-Consistent Covariance Matrix, 97
WIDE option
   GRAPH, 66
   OLS, 101
   PLOT, 70
   PORTFOLIO, 376
   PRINT, 38
   SET, 441
   STAT, 58
   STOCKGRAPH, 372
   WRITE, 39
Wright, S.J., 389
WRITE
   APPEND option, 39
   BEG= option, 39
   BINARY option, 39
   BYVAR option, 39
   CLOSE option, 39
   command, 39
   DIF option, 39, 48
   END= option, 39
   FORMAT option, 39
   NONAMES option, 39
   NOREWIND option, 39
   REWIND option, 39
   WIDE option, 39
X= option
   DISTRIB, 424
XMAX= option
   PLOT, 70
XMIN= option
   PLOT, 70
YMAX= option
   PLOT, 70
YMIN= option
   PLOT, 70
Yule, G, 53
Zarembka, P., 169, 175, 189
Zellner, A., 423
ZENTROPY= option
   GME, 231
ZEROTOL= option
   QP, 393
ZMATRIX= option
   NL, 269